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5What is concurrency?

You can combine these in an arbitrary fashion and have multiple processes, some of
which are multithreaded and some of which are single-threaded, but the principles
are the same. Let’s now have a brief look at these two approaches to concurrency in
an application.

CONCURRENCY WITH MULTIPLE PROCESSES

The first way to make use of concurrency within an appli-
cation is to divide the application into multiple, separate,
single-threaded processes that are run at the same time,
much as you can run your web browser and word proces-
sor at the same time. These separate processes can then
pass messages to each other through all the normal inter-
process communication channels (signals, sockets, files,
pipes, and so on), as shown in figure 1.3. One downside is
that such communication between processes is often
either complicated to set up or slow or both, because
operating systems typically provide a lot of protection
between processes to avoid one process accidentally modi-
fying data belonging to another process. Another down-
side is that there’s an inherent overhead in running
multiple processes: it takes time to start a process, the
operating system must devote internal resources to man-
aging the process, and so forth.

 Of course, it’s not all downside: the added protection operating systems typically
provide between processes and the higher-level communication mechanisms mean
that it can be easier to write safe concurrent code with processes rather than threads.
Indeed, environments such as that provided for the Erlang programming language
use processes as the fundamental building block of concurrency to great effect.

 Using separate processes for concurrency also has an additional advantage—you can
run the separate processes on distinct machines connected over a network. Though this
increases the communication cost, on a carefully designed system it can be a cost-
effective way of increasing the available parallelism and improving performance.

CONCURRENCY WITH MULTIPLE THREADS

The alternative approach to concurrency is to run multiple threads in a single pro-
cess. Threads are much like lightweight processes: each thread runs independently of
the others, and each thread may run a different sequence of instructions. But all
threads in a process share the same address space, and most of the data can be
accessed directly from all threads—global variables remain global, and pointers or ref-
erences to objects or data can be passed around among threads. Although it’s often
possible to share memory among processes, this is complicated to set up and often
hard to manage, because memory addresses of the same data aren’t necessarily the
same in different processes. Figure 1.4 shows two threads within a process communi-
cating through shared memory.

Figure 1.3 Communication 
between a pair of processes 
running concurrently
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 The shared address space and lack of protection of data
between threads makes the overhead associated with using multi-
ple threads much smaller than that from using multiple pro-
cesses, because the operating system has less bookkeeping to do.
But the flexibility of shared memory also comes with a price: if
data is accessed by multiple threads, the application programmer
must ensure that the view of data seen by each thread is consistent
whenever it is accessed. The issues surrounding sharing data
between threads and the tools to use and guidelines to follow to
avoid problems are covered throughout this book, notably in
chapters 3, 4, 5, and 8. The problems are not insurmountable,
provided suitable care is taken when writing the code, but they do
mean that a great deal of thought must go into the communica-
tion between threads.

 The low overhead associated with launching and communicat-
ing between multiple threads within a process compared to launching and communi-
cating between multiple single-threaded processes means that this is the favored
approach to concurrency in mainstream languages including C++, despite the poten-
tial problems arising from the shared memory. In addition, the C++ Standard doesn’t
provide any intrinsic support for communication between processes, so applications
that use multiple processes will have to rely on platform-specific APIs to do so. This book
therefore focuses exclusively on using multithreading for concurrency, and future refer-
ences to concurrency assume that this is achieved by using multiple threads.

 Having clarified what we mean by concurrency, let’s now look at why you would use
concurrency in your applications.

1.2 Why use concurrency?
There are two main reasons to use concurrency in an application: separation of con-
cerns and performance. In fact, I’d go so far as to say that they’re pretty much the only
reasons to use concurrency; anything else boils down to one or the other (or maybe even
both) when you look hard enough (well, except for reasons like “because I want to”).

1.2.1 Using concurrency for separation of concerns

Separation of concerns is almost always a good idea when writing software; by group-
ing related bits of code together and keeping unrelated bits of code apart, you can
make your programs easier to understand and test, and thus less likely to contain
bugs. You can use concurrency to separate distinct areas of functionality, even when
the operations in these distinct areas need to happen at the same time; without the
explicit use of concurrency you either have to write a task-switching framework or
actively make calls to unrelated areas of code during an operation.

 Consider a processing-intensive application with a user interface, such as a DVD
player application for a desktop computer. Such an application fundamentally has two

Figure 1.4 Commu-
nication between 
a pair of threads 
running concurrently 
in a single process
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1.4 Getting started
OK, so you have a nice, shiny C++11-compatible compiler. What next? What does a
multithreaded C++ program look like? It looks pretty much like any other C++ pro-
gram, with the usual mix of variables, classes, and functions. The only real distinction
is that some functions might be running concurrently, so you need to ensure that
shared data is safe for concurrent access, as described in chapter 3. Of course, in
order to run functions concurrently, specific functions and objects must be used to
manage the different threads.

1.4.1 Hello, Concurrent World
Let’s start with a classic example: a program to print “Hello World.” A really simple
Hello, World program that runs in a single thread is shown here, to serve as a baseline
when we move to multiple threads:

#include <iostream>

int main()
{
    std::cout<<"Hello World\n";
}

All this program does is write “Hello World” to the standard output stream. Let’s com-
pare it to the simple Hello, Concurrent World program shown in the following listing,
which starts a separate thread to display the message.

#include <iostream>
#include <thread>           

void hello()                       
{
    std::cout<<"Hello Concurrent World\n";
}

int main()
{
    std::thread t(hello);   
    t.join();                      
}

The first difference is the extra #include <thread> B. The declarations for the multi-
threading support in the Standard C++ Library are in new headers: the functions and
classes for managing threads are declared in <thread>, whereas those for protecting
shared data are declared in other headers.

 Second, the code for writing the message has been moved to a separate function
c. This is because every thread has to have an initial function, which is where the new
thread of execution begins. For the initial thread in an application, this is main(), but
for every other thread it’s specified in the constructor of a std::thread object—in

Listing 1.1 A simple Hello, Concurrent World program

b

c

d
 e
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this case, the std::thread object named t d has the new function hello() as its ini-
tial function.

 This is the next difference: rather than just writing directly to standard output or
calling hello() from main(), this program launches a whole new thread to do it,
bringing the thread count to two—the initial thread that starts at main() and the new
thread that starts at hello().

 After the new thread has been launched d, the initial thread continues execution.
If it didn’t wait for the new thread to finish, it would merrily continue to the end of
main() and thus end the program—possibly before the new thread had had a chance
to run. This is why the call to join() is there e—as described in chapter 2, this causes
the calling thread (in main()) to wait for the thread associated with the std::thread
object, in this case, t.

 If this seems like a lot of work to go to just to write a message to standard output, it
is—as described previously in section 1.2.3, it’s generally not worth the effort to use
multiple threads for such a simple task, especially if the initial thread has nothing to
do in the meantime. Later in the book, we’ll work through examples that show scenar-
ios where there’s a clear gain to using multiple threads.

1.5 Summary
In this chapter, I covered what is meant by concurrency and multithreading and why
you’d choose to use it (or not) in your applications. I also covered the history of multi-
threading in C++ from the complete lack of support in the 1998 standard, through
various platform-specific extensions, to proper multithreading support in the new C++
Standard, C++11. This support is coming just in time to allow programmers to take
advantage of the greater hardware concurrency becoming available with newer CPUs,
as chip manufacturers choose to add more processing power in the form of multiple
cores that allow more tasks to be executed concurrently, rather than increasing the
execution speed of a single core.

 I also showed how simple using the classes and functions from the C++ Standard
Library can be, in the examples in section 1.4. In C++, using multiple threads isn’t
complicated in and of itself; the complexity lies in designing the code so that it
behaves as intended.

 After the taster examples of section 1.4, it’s time for something with a bit more
substance. In chapter 2 we’ll look at the classes and functions available for manag-
ing threads.

    



#include	
  <iostream>	
  
#include	
  <thread>	
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void	
  hello(){	
  
	
  	
  std::cout<<"Hello	
  Concurrent	
  World\n";	
  
}	
  
	
  
int	
  main()	
  {	
  
	
  	
  std::thread	
  t(hello);	
  
	
  	
  t.join();	
  
}	
  
	
  

Class	
  Exercise,	
  join	
  a	
  thread	
  

Hello	
  Concurrent	
  World	
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2.1 Basic thread management
Every C++ program has at least one thread, which is started by the C++ runtime: the
thread running main(). Your program can then launch additional threads that have
another function as the entry point. These threads then run concurrently with each
other and with the initial thread. Just as the program exits when the program returns
from main(), when the specified entry point function returns, the thread exits. As
you’ll see, if you have a std::thread object for a thread, you can wait for it to finish;
but first you have to start it, so let’s look at launching threads.

2.1.1 Launching a thread
As you saw in chapter 1, threads are started by constructing a std::thread object that
specifies the task to run on that thread. In the simplest case, that task is just a plain,
ordinary void-returning function that takes no parameters. This function runs on its
own thread until it returns, and then the thread stops. At the other extreme, the task
could be a function object that takes additional parameters and performs a series of
independent operations that are specified through some kind of messaging system
while it’s running, and the thread stops only when it’s signaled to do so, again via
some kind of messaging system. It doesn’t matter what the thread is going to do or
where it’s launched from, but starting a thread using the C++ Thread Library always
boils down to constructing a std::thread object:

void do_some_work();
std::thread my_thread(do_some_work);

This is just about as simple as it gets. Of course, you have to make sure that the
<thread> header is included so the compiler can see the definition of the std::
thread class. As with much of the C++ Standard Library, std::thread works with any
callable type, so you can pass an instance of a class with a function call operator to the
std::thread constructor instead:

class background_task
{
public:
    void operator()() const
    {
        do_something();
        do_something_else();
    }
};
background_task f;
std::thread my_thread(f);

In this case, the supplied function object is copied into the storage belonging to the
newly created thread of execution and invoked from there. It’s therefore essential that
the copy behave equivalently to the original, or the result may not be what’s expected.

 One thing to consider when passing a function object to the thread constructor is
to avoid what is dubbed “C++’s most vexing parse.” If you pass a temporary rather

    



17Basic thread management

than a named variable, then the syntax can be the same as that of a function declara-
tion, in which case the compiler interprets it as such, rather than an object definition.
For example,

std::thread my_thread(background_task());

declares a function my_thread that takes a single parameter (of type pointer to a func-
tion taking no parameters and returning a background_task object) and returns a
std::thread object, rather than launching a new thread. You can avoid this by nam-
ing your function object as shown previously, by using an extra set of parentheses, or
by using the new uniform initialization syntax, for example:

std::thread my_thread((background_task()));       
std::thread my_thread{background_task()};               

In the first example B, the extra parentheses prevent interpretation as a function
declaration, thus allowing my_thread to be declared as a variable of type std::thread.
The second example c uses the new uniform initialization syntax with braces rather
than parentheses, and thus would also declare a variable.

 One type of callable object that avoids this problem is a lambda expression. This is a
new feature from C++11 which essentially allows you to write a local function, possibly
capturing some local variables and avoiding the need of passing additional arguments
(see section 2.2). For full details on lambda expressions, see appendix A, section A.5.
The previous example can be written using a lambda expression as follows:

std::thread my_thread([](
    do_something();
    do_something_else();
});

Once you’ve started your thread, you need to explicitly decide whether to wait for it to
finish (by joining with it—see section 2.1.2) or leave it to run on its own (by detaching
it—see section 2.1.3). If you don’t decide before the std::thread object is destroyed,
then your program is terminated (the std::thread destructor calls std::terminate()).
It’s therefore imperative that you ensure that the thread is correctly joined or
detached, even in the presence of exceptions. See section 2.1.3 for a technique to han-
dle this scenario. Note that you only have to make this decision before the std::thread
object is destroyed—the thread itself may well have finished long before you join with
it or detach it, and if you detach it, then the thread may continue running long after
the std::thread object is destroyed.

 If you don’t wait for your thread to finish, then you need to ensure that the data
accessed by the thread is valid until the thread has finished with it. This isn’t a new
problem—even in single-threaded code it is undefined behavior to access an object
after it’s been destroyed—but the use of threads provides an additional opportunity to
encounter such lifetime issues.

 One situation in which you can encounter such problems is when the thread
function holds pointers or references to local variables and the thread hasn’t

b
 c

    



18 CHAPTER 2 Managing threads

finished when the function exits. The following listing shows an example of just
such a scenario.

struct func
{
    int& i;

    func(int& i_):i(i_){}

    void operator()()
    {
        for(unsigned j=0;j<1000000;++j)
        {
            do_something(i);               
        }
    }
};

void oops()
{
    int some_local_state=0;
    func my_func(some_local_state);
    std::thread my_thread(my_func);
    my_thread.detach();               
}                                                       

In this case, the new thread associated with my_thread will probably still be running
when oops exits d, because you’ve explicitly decided not to wait for it by calling
detach() c. If the thread is still running, then the next call to do_something(i) B
will access an already destroyed variable. This is just like normal single-threaded
code—allowing a pointer or reference to a local variable to persist beyond the func-
tion exit is never a good idea—but it’s easier to make the mistake with multithreaded
code, because it isn’t necessarily immediately apparent that this has happened. 

 One common way to handle this scenario is to make the thread function self-
contained and copy the data into the thread rather than sharing the data. If you use a
callable object for your thread function, that object is itself copied into the thread, so
the original object can be destroyed immediately. But you still need to be wary of
objects containing pointers or references, such as that from listing 2.1. In particular,
it’s a bad idea to create a thread within a function that has access to the local variables
in that function, unless the thread is guaranteed to finish before the function exits.

 Alternatively, you can ensure that the thread has completed execution before the
function exits by joining with the thread.

2.1.2 Waiting for a thread to complete
If you need to wait for a thread to complete, you can do this by calling join() on the asso-
ciated std::thread instance. In the case of listing 2.1, replacing the call to my_thread
.detach() before the closing brace of the function body with a call to my_thread.join()

Listing 2.1 A function that returns while a thread still has access to local variables

Potential access to 
dangling reference

b

Don’t wait 
for thread 
to finish

c
New thread 
might still 
be running

d
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shows the creation of two threads of execution and the transfer of ownership of those
threads among three std::thread instances, t1, t2, and t3:

void some_function();
void some_other_function();
std::thread t1(some_function);         
std::thread t2=std::move(t1);                
t1=std::thread(some_other_function);   
std::thread t3;                              
t3=std::move(t2);                      
t1=std::move(t3);                            

First, a new thread is started B and associated with t1. Ownership is then transferred
over to t2 when t2 is constructed, by invoking std::move() to explicitly move owner-
ship c. At this point, t1 no longer has an associated thread of execution; the thread
running some_function is now associated with t2.

 Then, a new thread is started and associated with a temporary std::thread
object  d. The subsequent transfer of ownership into t1 doesn’t require a call to std::
move() to explicitly move ownership, because the owner is a temporary object—moving
from temporaries is automatic and implicit.

t3 is default constructed e, which means that it’s created without any associated
thread of execution. Ownership of the thread currently associated with t2 is transferred
into t3 f, again with an explicit call to std::move(), because t2 is a named object. After
all these moves, t1 is associated with the thread running some_other_function, t2 has no
associated thread, and t3 is associated with the thread running some_function.

 The final move g transfers ownership of the thread running some_function back
to t1 where it started. But in this case t1 already had an associated thread (which was
running some_other_function), so std::terminate() is called to terminate the
program. This is done for consistency with the std::thread destructor. You saw in
section 2.1.1 that you must explicitly wait for a thread to complete or detach it before
destruction, and the same applies to assignment: you can’t just “drop” a thread by
assigning a new value to the std::thread object that manages it.

 The move support in std::thread means that ownership can readily be trans-
ferred out of a function, as shown in the following listing.

std::thread f()
{
    void some_function();
    return std::thread(some_function);
}
std::thread g()
{
    void some_other_function(int);
    std::thread t(some_other_function,42);
    return t;
}

Listing 2.5 Returning a std::thread from a function

b
 c

d
 e

f This assignment will 
terminate program!

g
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#include	
  <iostream>	
  
#include	
  <pthread.h>	
  
	
  
using	
  namespace	
  std;	
  
	
  
#define	
  NUM_THREADS	
  	
  	
  	
  	
  5	
  
	
  
void	
  *PrintHello(void	
  *threadid)	
  
{	
  
	
  	
  	
  	
  long	
  Qd;	
  
	
  	
  	
  	
  Qd	
  =	
  (long)threadid;	
  
	
  	
  	
  	
  cout	
  <<	
  "Hello	
  World!	
  Thread	
  ID,	
  "	
  <<	
  Qd	
  <<	
  endl;	
  
	
  	
  	
  	
  pthread_exit(NULL);	
  
}	
  
	
  
int	
  main	
  ()	
  
{	
  
	
  	
  	
  	
  pthread_t	
  threads[NUM_THREADS];	
  
	
  	
  	
  	
  int	
  rc;	
  
	
  	
  	
  	
  int	
  i;	
  
	
  	
  	
  	
  for(	
  i=0;	
  i	
  <	
  NUM_THREADS;	
  i++	
  ){	
  
	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  "main()	
  :	
  creaQng	
  thread,	
  "	
  <<	
  i	
  <<	
  endl;	
  
	
  	
  	
  	
  	
  	
  	
  	
  rc	
  =	
  pthread_create(&threads[i],	
  NULL,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  PrintHello,	
  (void	
  *)i);	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  (rc){	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  "Error:unable	
  to	
  create	
  thread,"	
  <<	
  rc	
  <<	
  endl;	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  exit(-­‐1);	
  
	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  pthread_exit(NULL);	
  
}	
  

main()	
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main()	
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  thread,	
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main()	
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#include	
  <iostream>	
  
#include	
  <pthread.h>	
  
using	
  namespace	
  std;	
  
#define	
  NUM_THREADS	
  	
  	
  	
  	
  5	
  
struct	
  thread_data{	
  
	
  	
  	
  int	
  	
  thread_id;	
  
	
  	
  	
  char	
  *message;	
  
};	
  
void	
  *PrintHello(void	
  *threadarg)	
  
{	
  
	
  	
  	
  struct	
  thread_data	
  *my_data;	
  
	
  	
  	
  my_data	
  =	
  (struct	
  thread_data	
  *)	
  threadarg;	
  
	
  	
  	
  cout	
  <<	
  "Thread	
  ID	
  :	
  "	
  <<	
  my_data-­‐>thread_id	
  ;	
  
	
  	
  	
  cout	
  <<	
  "	
  Message	
  :	
  "	
  <<	
  my_data-­‐>message	
  <<	
  endl;	
  
	
  	
  	
  pthread_exit(NULL);	
  
}	
  
	
  
int	
  main	
  ()	
  
{	
  
	
  	
  	
  pthread_t	
  threads[NUM_THREADS];	
  
	
  	
  	
  struct	
  thread_data	
  td[NUM_THREADS];	
  
	
  	
  	
  int	
  rc;	
  
	
  	
  	
  int	
  I;	
  
	
  	
  	
  for(	
  i=0;	
  i	
  <	
  NUM_THREADS;	
  i++	
  ){	
  
	
  	
  	
  	
  	
  	
  cout	
  <<"main()	
  :	
  creaQng	
  thread,	
  "	
  <<	
  i	
  <<	
  endl;	
  
	
  	
  	
  	
  	
  	
  td[i].thread_id	
  =	
  i;	
  
	
  	
  	
  	
  	
  	
  td[i].message	
  =	
  "This	
  is	
  message";	
  
	
  	
  	
  	
  	
  	
  rc	
  =	
  pthread_create(&threads[i],	
  NULL,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  PrintHello,	
  (void	
  *)&td[i]);	
  
	
  	
  	
  	
  	
  	
  if	
  (rc){	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  "Error:unable	
  to	
  create	
  thread,"	
  <<	
  rc	
  <<	
  endl;	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  exit(-­‐1);	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  }	
  
	
  	
  	
  pthread_exit(NULL);	
  
}	
  

main()	
  :	
  crea4ng	
  thread,	
  0	
  
main()	
  :	
  crea4ng	
  thread,	
  1	
  
main()	
  :	
  crea4ng	
  thread,	
  2	
  
main()	
  :	
  crea4ng	
  thread,	
  3	
  
main()	
  :	
  crea4ng	
  thread,	
  4	
  
Thread	
  ID	
  :	
  1	
  Message	
  :	
  This	
  is	
  message	
  
Thread	
  ID	
  :	
  0	
  Message	
  :	
  This	
  is	
  message	
  
Thread	
  ID	
  :	
  2	
  Message	
  :	
  This	
  is	
  message	
  
Thread	
  ID	
  :	
  3	
  Message	
  :	
  This	
  is	
  message	
  
Thread	
  ID	
  :	
  4	
  Message	
  :	
  This	
  is	
  message	
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#include	
  <iostream>	
  
#include	
  <pthread.h>	
  
	
  
using	
  namespace	
  std;	
  
	
  
#define	
  NUM_THREADS	
  	
  	
  	
  	
  5	
  
	
  
void	
  *wait(void	
  *t)	
  
{	
  
	
  	
  	
  int	
  i;	
  
	
  	
  	
  long	
  Qd;	
  
	
  
	
  	
  	
  Qd	
  =	
  (long)t;	
  
	
  
	
  	
  	
  sleep(1);	
  //	
  	
  
	
  	
  	
  cout	
  <<	
  "Sleeping	
  in	
  thread	
  "	
  <<	
  endl;	
  
	
  	
  	
  cout	
  <<	
  "Thread	
  with	
  id	
  :	
  "	
  <<	
  Qd	
  <<	
  "	
  	
  ...exiQng	
  "	
  <<	
  endl;	
  
	
  	
  	
  pthread_exit(NULL);	
  
}	
  
	
  
int	
  main	
  ()	
  
{	
  
	
  	
  	
  int	
  rc;	
  
	
  	
  	
  int	
  i;	
  
	
  	
  	
  pthread_t	
  threads[NUM_THREADS];	
  
	
  	
  	
  pthread_aer_t	
  aer;	
  
	
  	
  	
  void	
  *status;	
  
	
  
	
  	
  	
  //	
  IniQalize	
  and	
  set	
  thread	
  joinable	
  
	
  	
  	
  pthread_aer_init(&aer);	
  
	
  	
  	
  pthread_aer_setdetachstate(&aer,	
  PTHREAD_CREATE_JOINABLE);	
  
	
  
	
  	
  	
  for(	
  i=0;	
  i	
  <	
  NUM_THREADS;	
  i++	
  ){	
  
	
  	
  	
  	
  	
  	
  cout	
  <<	
  "main()	
  :	
  creaQng	
  thread,	
  "	
  <<	
  i	
  <<	
  endl;	
  
	
  	
  	
  	
  	
  	
  rc	
  =	
  pthread_create(&threads[i],	
  NULL,	
  wait,	
  (void	
  *)i	
  );	
  
	
  	
  	
  	
  	
  	
  if	
  (rc){	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  "Error:unable	
  to	
  create	
  thread,"	
  <<	
  rc	
  <<	
  endl;	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  exit(-­‐1);	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  }	
  
	
  
	
  	
  	
  //	
  free	
  aeribute	
  and	
  wait	
  for	
  the	
  other	
  threads	
  
	
  	
  	
  pthread_aer_destroy(&aer);	
  
	
  	
  	
  for(	
  i=0;	
  i	
  <	
  NUM_THREADS;	
  i++	
  ){	
  
	
  	
  	
  	
  	
  	
  rc	
  =	
  pthread_join(threads[i],	
  &status);	
  
	
  	
  	
  	
  	
  	
  if	
  (rc){	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  "Error:unable	
  to	
  join,"	
  <<	
  rc	
  <<	
  endl;	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  exit(-­‐1);	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  cout	
  <<	
  "Main:	
  completed	
  thread	
  id	
  :"	
  <<	
  i	
  ;	
  
	
  	
  	
  	
  	
  	
  cout	
  <<	
  "	
  	
  exiQng	
  with	
  status	
  :"	
  <<	
  (int)status	
  <<	
  endl;	
  
	
  	
  	
  }	
  
	
  
	
  	
  	
  cout	
  <<	
  "Main:	
  program	
  exiQng."	
  <<	
  endl;	
  
	
  	
  	
  pthread_exit(NULL);	
  
}	
  

	
  
	
  	
  	
  //	
  free	
  aeribute	
  and	
  wait	
  for	
  the	
  other	
  threads	
  
	
  	
  	
  pthread_aer_destroy(&aer);	
  
	
  	
  	
  for(	
  i=0;	
  i	
  <	
  NUM_THREADS;	
  i++	
  ){	
  
	
  	
  	
  	
  	
  	
  rc	
  =	
  pthread_join(threads[i],	
  &status);	
  
	
  	
  	
  	
  	
  	
  if	
  (rc){	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  "Error:unable	
  to	
  join,"	
  <<	
  rc	
  <<	
  endl;	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  exit(-­‐1);	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  cout	
  <<	
  "Main:	
  completed	
  thread	
  id	
  :"	
  <<	
  i	
  ;	
  
	
  	
  	
  	
  	
  	
  cout	
  <<	
  "	
  	
  exiQng	
  with	
  status	
  :"	
  <<	
  (int)status	
  <<	
  endl;	
  
	
  	
  	
  }	
  
	
  
	
  	
  	
  cout	
  <<	
  "Main:	
  program	
  exiQng."	
  <<	
  endl;	
  
	
  	
  	
  pthread_exit(NULL);	
  
}	
  

main()	
  :	
  crea4ng	
  thread,	
  0	
  
main()	
  :	
  crea4ng	
  thread,	
  1	
  
main()	
  :	
  crea4ng	
  thread,	
  2	
  
main()	
  :	
  crea4ng	
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When the initial thread reaches the end of f f, the scoped_thread object is
destroyed and then joins with d the thread supplied to the constructor B. Whereas
with the thread_guard class from listing 2.3 the destructor had to check that the
thread was still joinable, you can do that in the constructor c and throw an exception
if it’s not.

 The move support in std::thread also allows for containers of std::thread
objects, if those containers are move aware (like the updated std::vector<>). This
means that you can write code like that in the following listing, which spawns a num-
ber of threads and then waits for them to finish.

void do_work(unsigned id);

void f()
{
    std::vector<std::thread> threads;
    for(unsigned i=0;i<20;++i)
    {
        threads.push_back(std::thread(do_work,i));   
    }
    std::for_each(threads.begin(),threads.end(),
                  std::mem_fn(&std::thread::join));   
}

If the threads are being used to subdivide the work of an algorithm, this is often just
what’s required; before returning to the caller, all threads must have finished. Of
course, the simple structure of listing 2.7 implies that the work done by the threads is
self-contained, and the result of their operations is purely the side effects on shared
data. If f() were to return a value to the caller that depended on the results of the
operations performed by these threads, then as written this return value would have
to be determined by examining the shared data after the threads had terminated.
Alternative schemes for transferring the results of operations between threads are dis-
cussed in chapter 4.

 Putting std::thread objects in a std::vector is a step toward automating the
management of those threads: rather than creating separate variables for those
threads and joining with them directly, they can be treated as a group. You can take
this a step further by creating a dynamic number of threads determined at runtime,
rather than creating a fixed number as in listing 2.7.

2.4 Choosing the number of threads at runtime
One feature of the C++ Standard Library that helps here is std::thread::hardware_
concurrency(). This function returns an indication of the number of threads that can
truly run concurrently for a given execution of a program. On a multicore system it
might be the number of CPU cores, for example. This is only a hint, and the function
might return 0 if this information is not available, but it can be a useful guide for split-
ting a task among threads.

Listing 2.7 Spawn some threads and wait for them to finish

Spawn 
threads

Call join() on each 
thread in turn
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 Listing 2.8 shows a simple implementation of a parallel version of std::accumulate.
It divides the work among the threads, with a minimum number of elements per
thread in order to avoid the overhead of too many threads. Note that this implementa-
tion assumes that none of the operations will throw an exception, even though excep-
tions are possible; the std::thread constructor will throw if it can’t start a new thread
of execution, for example. Handling exceptions in such an algorithm is beyond the
scope of this simple example and will be covered in chapter 8.

template<typename Iterator,typename T>
struct accumulate_block
{
    void operator()(Iterator first,Iterator last,T& result)
    {
        result=std::accumulate(first,last,result);
    }
};

template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
    unsigned long const length=std::distance(first,last);

    if(!length)                                            
        return init;

    unsigned long const min_per_thread=25;
    unsigned long const max_threads=
        (length+min_per_thread-1)/min_per_thread;    

    unsigned long const hardware_threads=
        std::thread::hardware_concurrency();

    unsigned long const num_threads=            
        std::min(hardware_threads!=0?hardware_threads:2,max_threads);

    unsigned long const block_size=length/num_threads;      

    std::vector<T> results(num_threads);
    std::vector<std::thread>  threads(num_threads-1);       

    Iterator block_start=first;
    for(unsigned long i=0;i<(num_threads-1);++i)
    {
        Iterator block_end=block_start;
        std::advance(block_end,block_size);                 
        threads[i]=std::thread(                 
            accumulate_block<Iterator,T>(),
            block_start,block_end,std::ref(results[i]));
        block_start=block_end;                              
    }
    accumulate_block<Iterator,T>()(
        block_start,last,results[num_threads-1]);    

Listing 2.8 A naïve parallel version of std::accumulate

b

c

d

e

f

g
h

i

j
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    std::for_each(threads.begin(),threads.end(),
        std::mem_fn(&std::thread::join));             

    return std::accumulate(results.begin(),results.end(),init);   
}

Although this is quite a long function, it’s actually straightforward. If the input range
is empty B, you just return the initial value init. Otherwise, there’s at least one ele-
ment in the range, so you can divide the number of elements to process by the mini-
mum block size in order to give the maximum number of threads c. This is to avoid
creating 32 threads on a 32-core machine when you have only five values in the range.

 The number of threads to run is the minimum of your calculated maximum and
the number of hardware threads d. You don’t want to run more threads than the
hardware can support (which is called oversubscription), because the context switching
will mean that more threads will decrease the performance. If the call to std::thread::
hardware_concurrency() returned 0, you’d simply substitute a number of your choice;
in this case I’ve chosen 2. You don’t want to run too many threads, because that would
slow things down on a single-core machine, but likewise you don’t want to run too few,
because then you’d be passing up the available concurrency.

 The number of entries for each thread to process is the length of the range
divided by the number of threads e. If you’re worrying about the case where the
number doesn’t divide evenly, don’t—you’ll handle that later.

 Now that you know how many threads you have, you can create a std::vector<T>
for the intermediate results and a std::vector<std::thread> for the threads f.
Note that you need to launch one fewer thread than num_threads, because you already
have one.

 Launching the threads is just a simple loop: advance the block_end iterator to the
end of the current block g and launch a new thread to accumulate the results for this
block h. The start of the next block is the end of this one i.

 After you’ve launched all the threads, this thread can then process the final block
j. This is where you take account of any uneven division: you know the end of the
final block must be last, and it doesn’t matter how many elements are in that block.

 Once you’ve accumulated the results for the last block, you can wait for all the
threads you spawned with std::for_each 1), as in listing 2.7, and then add up the results
with a final call to std::accumulate 1!.

 Before you leave this example, it’s worth pointing out that where the addition
operator for the type T is not associative (such as for float or double), the results of
this parallel_accumulate may vary from those of std::accumulate, because of the
grouping of the range into blocks. Also, the requirements on the iterators are slightly
more stringent: they must be at least forward iterators, whereas std::accumulate can
work with single-pass input iterators, and T must be default constructible so that you can cre-
ate the results vector. These sorts of requirement changes are common with parallel
algorithms; by their very nature they’re different in some manner in order to make
them parallel, and this has consequences on the results and requirements. Parallel

1)

1!
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    std::for_each(threads.begin(),threads.end(),
        std::mem_fn(&std::thread::join));             

    return std::accumulate(results.begin(),results.end(),init);   
}

Although this is quite a long function, it’s actually straightforward. If the input range
is empty B, you just return the initial value init. Otherwise, there’s at least one ele-
ment in the range, so you can divide the number of elements to process by the mini-
mum block size in order to give the maximum number of threads c. This is to avoid
creating 32 threads on a 32-core machine when you have only five values in the range.

 The number of threads to run is the minimum of your calculated maximum and
the number of hardware threads d. You don’t want to run more threads than the
hardware can support (which is called oversubscription), because the context switching
will mean that more threads will decrease the performance. If the call to std::thread::
hardware_concurrency() returned 0, you’d simply substitute a number of your choice;
in this case I’ve chosen 2. You don’t want to run too many threads, because that would
slow things down on a single-core machine, but likewise you don’t want to run too few,
because then you’d be passing up the available concurrency.

 The number of entries for each thread to process is the length of the range
divided by the number of threads e. If you’re worrying about the case where the
number doesn’t divide evenly, don’t—you’ll handle that later.

 Now that you know how many threads you have, you can create a std::vector<T>
for the intermediate results and a std::vector<std::thread> for the threads f.
Note that you need to launch one fewer thread than num_threads, because you already
have one.

 Launching the threads is just a simple loop: advance the block_end iterator to the
end of the current block g and launch a new thread to accumulate the results for this
block h. The start of the next block is the end of this one i.

 After you’ve launched all the threads, this thread can then process the final block
j. This is where you take account of any uneven division: you know the end of the
final block must be last, and it doesn’t matter how many elements are in that block.

 Once you’ve accumulated the results for the last block, you can wait for all the
threads you spawned with std::for_each 1), as in listing 2.7, and then add up the results
with a final call to std::accumulate 1!.

 Before you leave this example, it’s worth pointing out that where the addition
operator for the type T is not associative (such as for float or double), the results of
this parallel_accumulate may vary from those of std::accumulate, because of the
grouping of the range into blocks. Also, the requirements on the iterators are slightly
more stringent: they must be at least forward iterators, whereas std::accumulate can
work with single-pass input iterators, and T must be default constructible so that you can cre-
ate the results vector. These sorts of requirement changes are common with parallel
algorithms; by their very nature they’re different in some manner in order to make
them parallel, and this has consequences on the results and requirements. Parallel
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algorithms are covered in more depth in chapter 8. It’s also worth noting that because
you can’t return a value directly from a thread, you must pass in a reference to the rel-
evant entry in the results vector. Alternative ways of returning results from threads
are addressed through the use of futures in chapter 4.

 In this case, all the information required by each thread was passed in when the
thread was started, including the location in which to store the result of its calculation.
This isn’t always the case: sometimes it’s necessary to be able to identify the threads in
some way for part of the processing. You could pass in an identifying number, such as
the value of i in listing 2.7, but if the function that needs the identifier is several levels
deep in the call stack and could be called from any thread, it’s inconvenient to have to
do it that way. When we were designing the C++ Thread Library we foresaw this need,
and so each thread has a unique identifier.

2.5 Identifying threads
Thread identifiers are of type std::thread::id and can be retrieved in two ways.
First, the identifier for a thread can be obtained from its associated std::thread
object by calling the get_id() member function. If the std::thread object doesn’t
have an associated thread of execution, the call to get_id() returns a default-
constructed std::thread::id object, which indicates “not any thread.” Alternatively,
the identifier for the current thread can be obtained by calling std::this_thread::
get_id(), which is also defined in the <thread> header.

 Objects of type std::thread::id can be freely copied and compared; they
wouldn’t be of much use as identifiers otherwise. If two objects of type std::thread::id
are equal, they represent the same thread, or both are holding the “not any thread”
value. If two objects aren’t equal, they represent different threads, or one represents a
thread and the other is holding the “not any thread” value.

 The Thread Library doesn’t limit you to checking whether thread identifiers are
the same or not; objects of type std::thread::id offer the complete set of compari-
son operators, which provide a total ordering for all distinct values. This allows them
to be used as keys in associative containers, or sorted, or compared in any other way
that you as a programmer may see fit. The comparison operators provide a total order
for all non-equal values of std::thread::id, so they behave as you’d intuitively
expect: if a<b and b<c, then a<c, and so forth. The Standard Library also provides
std::hash<std::thread::id> so that values of type std::thread::id can be used as
keys in the new unordered associative containers too.

 Instances of std::thread::id are often used to check whether a thread needs to
perform some operation. For example, if threads are used to divide work as in list-
ing 2.8, the initial thread that launched the others might need to perform its work
slightly differently in the middle of the algorithm. In this case it could store the result
of std::this_thread::get_id() before launching the other threads, and then the
core part of the algorithm (which is common to all threads) could check its own
thread ID against the stored value:
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std::thread::id master_thread;
void some_core_part_of_algorithm()
{
    if(std::this_thread::get_id()==master_thread)
    {
        do_master_thread_work();
    }
    do_common_work();
}

Alternatively, the std::thread::id of the current thread could be stored in a data
structure as part of an operation. Later operations on that same data structure could
then check the stored ID against the ID of the thread performing the operation to
determine what operations are permitted/required.

 Similarly, thread IDs could be used as keys into associative containers where spe-
cific data needs to be associated with a thread and alternative mechanisms such as
thread-local storage aren’t appropriate. Such a container could, for example, be used
by a controlling thread to store information about each of the threads under its con-
trol or for passing information between threads.

 The idea is that std::thread::id will suffice as a generic identifier for a thread in
most circumstances; it’s only if the identifier has semantic meaning associated with it
(such as being an index into an array) that alternatives should be necessary. You can
even write out an instance of std::thread::id to an output stream such as std::cout:

std::cout<<std::this_thread::get_id();

The exact output you get is strictly implementation dependent; the only guarantee
given by the standard is that thread IDs that compare as equal should produce the
same output, and those that are not equal should give different output. This is there-
fore primarily useful for debugging and logging, but the values have no semantic
meaning, so there’s not much more that could be said anyway.

2.6 Summary
In this chapter I covered the basics of thread management with the C++ Standard
Library: starting threads, waiting for them to finish, and not waiting for them to finish
because you want them to run in the background. You also saw how to pass arguments
into the thread function when a thread is started, how to transfer the responsibility for
managing a thread from one part of the code to another, and how groups of threads
can be used to divide work. Finally, I discussed identifying threads in order to associ-
ate data or behavior with specific threads that’s inconvenient to associate through
alternative means. Although you can do quite a lot with purely independent threads
that each operate on separate data, as in listing 2.8 for example, sometimes it’s desir-
able to share data among threads while they’re running. Chapter 3 discusses the issues
surrounding sharing data directly among threads, while chapter 4 covers more gen-
eral issues surrounding synchronizing operations with and without shared data.
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are communicated to the other threads that care about that data. The ease with which
data can be shared between multiple threads in a single process is not just a benefit—
it can also be a big drawback. Incorrect use of shared data is one of the biggest causes
of concurrency-related bugs, and the consequences can be far worse than sausage-
flavored cakes.

 This chapter is about sharing data safely between threads in C++, avoiding the
potential problems that can arise, and maximizing the benefits.

3.1 Problems with sharing data between threads
When it comes down to it, the problems with sharing data between threads are all due
to the consequences of modifying data. If all shared data is read-only, there’s no problem,
because the data read by one thread is unaffected by whether or not another thread is reading the
same data. However, if data is shared between threads, and one or more threads start
modifying the data, there’s a lot of potential for trouble. In this case, you must take
care to ensure that everything works out OK.

 One concept that’s widely used to help programmers reason about their code is
that of invariants—statements that are always true about a particular data structure,
such as “this variable contains the number of items in the list.” These invariants are
often broken during an update, especially if the data structure is of any complexity or
the update requires modification of more than one value.

 Consider a doubly linked list, where each node holds a pointer to both the next
node in the list and the previous one. One of the invariants is that if you follow a
“next” pointer from one node (A) to another (B), the “previous” pointer from that
node (B) points back to the first node (A). In order to remove a node from the list,
the nodes on either side have to be updated to point to each other. Once one has
been updated, the invariant is broken until the node on the other side has been
updated too; after the update has completed, the invariant holds again.

 The steps in deleting an entry from such a list are shown in figure 3.1:

1 Identify the node to delete (N).
2 Update the link from the node prior to N to point to the node after N.
3 Update the link from the node after N to point to the node prior to N.
4 Delete node N.

As you can see, between steps b and c, the links going in one direction are inconsis-
tent with the links going in the opposite direction, and the invariant is broken.

 The simplest potential problem with modifying data that’s shared between threads
is that of broken invariants. If you don’t do anything special to ensure otherwise, if
one thread is reading the doubly linked list while another is removing a node, it’s
quite possible for the reading thread to see the list with a node only partially removed
(because only one of the links has been changed, as in step b of figure 3.1), so the invari-
ant is broken. The consequences of this broken invariant can vary; if the other thread is
just reading the list items from left to right in the diagram, it will skip the node being
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deleted. On the other hand, if the second thread is trying to delete the rightmost
node in the diagram, it might end up permanently corrupting the data structure and
eventually crashing the program. Whatever the outcome, this is an example of one of
the most common causes of bugs in concurrent code: a race condition. 

3.1.1 Race conditions
Suppose you’re buying tickets to see a movie at the cinema. If it’s a big cinema, multi-
ple cashiers will be taking money, so more than one person can buy tickets at the same
time. If someone at another cashier’s desk is also buying tickets for the same movie as
you are, which seats are available for you to choose from depends on whether the

Figure 3.1 Deleting a node from a doubly linked list
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other person actually books first or you do. If there are only a few seats left, this differ-
ence can be quite crucial: it might literally be a race to see who gets the last tickets.
This is an example of a race condition: which seats you get (or even whether you get
tickets) depends on the relative ordering of the two purchases.

 In concurrency, a race condition is anything where the outcome depends on the
relative ordering of execution of operations on two or more threads; the threads
race to perform their respective operations. Most of the time, this is quite benign
because all possible outcomes are acceptable, even though they may change with dif-
ferent relative orderings. For example, if two threads are adding items to a queue
for processing, it generally doesn’t matter which item gets added first, provided that
the invariants of the system are maintained. It’s when the race condition leads to
broken invariants that there’s a problem, such as with the doubly linked list exam-
ple just mentioned. When talking about concurrency, the term race condition is usu-
ally used to mean a problematic race condition; benign race conditions aren’t so
interesting and aren’t a cause of bugs. The C++ Standard also defines the term data
race to mean the specific type of race condition that arises because of concurrent
modification to a single object (see section 5.1.2 for details); data races cause the
dreaded undefined behavior.

 Problematic race conditions typically occur where completing an operation
requires modification of two or more distinct pieces of data, such as the two link
pointers in the example. Because the operation must access two separate pieces of
data, these must be modified in separate instructions, and another thread could
potentially access the data structure when only one of them has been completed. Race
conditions can often be hard to find and hard to duplicate because the window of
opportunity is small. If the modifications are done as consecutive CPU instructions,
the chance of the problem exhibiting on any one run-through is very small, even if the
data structure is being accessed by another thread concurrently. As the load on the sys-
tem increases, and the number of times the operation is performed increases, the
chance of the problematic execution sequence occurring also increases. It’s almost
inevitable that such problems will show up at the most inconvenient time. Because
race conditions are generally timing sensitive, they can often disappear entirely when
the application is run under the debugger, because the debugger affects the timing
of the program, even if only slightly.

 If you’re writing multithreaded programs, race conditions can easily be the bane
of your life; a great deal of the complexity in writing software that uses concurrency
comes from avoiding problematic race conditions.

3.1.2 Avoiding problematic race conditions
There are several ways to deal with problematic race conditions. The simplest option is
to wrap your data structure with a protection mechanism, to ensure that only the thread
actually performing a modification can see the intermediate states where the invari-
ants are broken. From the point of view of other threads accessing that data structure,
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such modifications either haven’t started or have completed. The C++ Standard
Library provides several such mechanisms, which are described in this chapter.

 Another option is to modify the design of your data structure and its invariants so
that modifications are done as a series of indivisible changes, each of which preserves
the invariants. This is generally referred to as lock-free programming and is difficult to get
right. If you’re working at this level, the nuances of the memory model and identifying
which threads can potentially see which set of values can get complicated. The memory
model is covered in chapter 5, and lock-free programming is discussed in chapter 7.

 Another way of dealing with race conditions is to handle the updates to the data
structure as a transaction, just as updates to a database are done within a transaction.
The required series of data modifications and reads is stored in a transaction log and
then committed in a single step. If the commit can’t proceed because the data struc-
ture has been modified by another thread, the transaction is restarted. This is termed
software transactional memory (STM), and it’s an active research area at the time of writ-
ing. This won’t be covered in this book, because there’s no direct support for STM in
C++. However, the basic idea of doing something privately and then committing in a
single step is something that I’ll come back to later.

 The most basic mechanism for protecting shared data provided by the C++ Stan-
dard is the mutex, so we’ll look at that first.

3.2 Protecting shared data with mutexes
So, you have a shared data structure such as the linked list from the previous section,
and you want to protect it from race conditions and the potential broken invariants
that can ensue. Wouldn’t it be nice if you could mark all the pieces of code that access
the data structure as mutually exclusive, so that if any thread was running one of them,
any other thread that tried to access that data structure had to wait until the first
thread was finished? That would make it impossible for a thread to see a broken
invariant except when it was the thread doing the modification.

 Well, this isn’t a fairy tale wish—it’s precisely what you get if you use a synchroniza-
tion primitive called a mutex (mutual exclusion). Before accessing a shared data struc-
ture, you lock the mutex associated with that data, and when you’ve finished accessing
the data structure, you unlock the mutex. The Thread Library then ensures that once
one thread has locked a specific mutex, all other threads that try to lock the same
mutex have to wait until the thread that successfully locked the mutex unlocks it. This
ensures that all threads see a self-consistent view of the shared data, without any bro-
ken invariants.

 Mutexes are the most general of the data-protection mechanisms available in C++,
but they’re not a silver bullet; it’s important to structure your code to protect the right
data (see section 3.2.2) and avoid race conditions inherent in your interfaces (see sec-
tion 3.2.3). Mutexes also come with their own problems, in the form of a deadlock (see
section 3.2.4) and protecting either too much or too little data (see section 3.2.8).
Let’s start with the basics.
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the data structure as mutually exclusive, so that if any thread was running one of them,
any other thread that tried to access that data structure had to wait until the first
thread was finished? That would make it impossible for a thread to see a broken
invariant except when it was the thread doing the modification.

 Well, this isn’t a fairy tale wish—it’s precisely what you get if you use a synchroniza-
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ture, you lock the mutex associated with that data, and when you’ve finished accessing
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one thread has locked a specific mutex, all other threads that try to lock the same
mutex have to wait until the thread that successfully locked the mutex unlocks it. This
ensures that all threads see a self-consistent view of the shared data, without any bro-
ken invariants.

 Mutexes are the most general of the data-protection mechanisms available in C++,
but they’re not a silver bullet; it’s important to structure your code to protect the right
data (see section 3.2.2) and avoid race conditions inherent in your interfaces (see sec-
tion 3.2.3). Mutexes also come with their own problems, in the form of a deadlock (see
section 3.2.4) and protecting either too much or too little data (see section 3.2.8).
Let’s start with the basics.
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3.2.1 Using mutexes in C++
In C++, you create a mutex by constructing an instance of std::mutex, lock it with a
call to the member function lock(), and unlock it with a call to the member func-
tion unlock(). However, it isn’t recommended practice to call the member functions
directly, because this means that you have to remember to call unlock() on every
code path out of a function, including those due to exceptions. Instead, the Standard
C++ Library provides the std::lock_guard class template, which implements that
RAII idiom for a mutex; it locks the supplied mutex on construction and unlocks it
on destruction, thus ensuring a locked mutex is always correctly unlocked. The fol-
lowing listing shows how to protect a list that can be accessed by multiple threads
using a std::mutex, along with std::lock_guard. Both of these are declared in the
<mutex> header.

#include <list>
#include <mutex>
#include <algorithm>

std::list<int> some_list;              
std::mutex some_mutex;          

void add_to_list(int new_value)
{
    std::lock_guard<std::mutex> guard(some_mutex);   
    some_list.push_back(new_value);
}
bool list_contains(int value_to_find) 
{
    std::lock_guard<std::mutex> guard(some_mutex);                       
    return std::find(some_list.begin(),some_list.end(),value_to_find)
        != some_list.end();
}

In listing 3.1, there’s a single global variable B, and it’s protected with a corresponding
global instance of std::mutex c. The use of std::lock_guard<std::mutex> in
add_to_list() d and again in list_contains() e means that the accesses in these
functions are mutually exclusive: list_contains() will never see the list partway
through a modification by add_to_list().

 Although there are occasions where this use of global variables is appropriate, in
the majority of cases it’s common to group the mutex and the protected data together
in a class rather than use global variables. This is a standard application of object-
oriented design rules: by putting them in a class, you’re clearly marking them as
related, and you can encapsulate the functionality and enforce the protection. In this
case, the functions add_to_list and list_contains would become member func-
tions of the class, and the mutex and protected data would both become private
members of the class, making it much easier to identify which code has access to the
data and thus which code needs to lock the mutex. If all the member functions of

Listing 3.1 Protecting a list with a mutex

b
c

d
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#include <exception>
#include <memory>                   

struct empty_stack: std::exception
{
    const char* what() const throw();
};

template<typename T>
class threadsafe_stack
{
public:
    threadsafe_stack();
    threadsafe_stack(const threadsafe_stack&);     
    threadsafe_stack& operator=(const threadsafe_stack&) = delete;   

    void push(T new_value);
    std::shared_ptr<T> pop();
    void pop(T& value);
    bool empty() const;
};

By paring down the interface you allow for maximum safety; even operations on the
whole stack are restricted. The stack itself can’t’ be assigned, because the assignment
operator is deleted B (see appendix A, section A.2), and there’s no swap() function.
It can, however, be copied, assuming the stack elements can be copied. The pop()
functions throw an empty_stack exception if the stack is empty, so everything still
works even if the stack is modified after a call to empty(). As mentioned in the
description of option 3, the use of std::shared_ptr allows the stack to take care of
the memory-allocation issues and avoid excessive calls to new and delete if desired.
Your five stack operations have now become three: push(), pop(), and empty(). Even
empty() is superfluous. This simplification of the interface allows for better control
over the data; you can ensure that the mutex is locked for the entirety of an operation.
The following listing shows a simple implementation that’s a wrapper around
std::stack<>.

#include <exception>
#include <memory>
#include <mutex>
#include <stack>

struct empty_stack: std::exception
{
    const char* what() const throw();
};

template<typename T>
class threadsafe_stack
{

Listing 3.4 An outline class definition for a thread-safe stack

Listing 3.5 A fleshed-out class definition for a thread-safe stack

For std::shared_ptr<>

Assignment
operator is

deleted

b

    



48 CHAPTER 3 Sharing data between threads

exchanges data between two instances of the same class; in order to ensure that the
data is exchanged correctly, without being affected by concurrent modifications,
the mutexes on both instances must be locked. However, if a fixed order is chosen
(for example, the mutex for the instance supplied as the first parameter, then the
mutex for the instance supplied as the second parameter), this can backfire: all it
takes is for two threads to try to exchange data between the same two instances with
the parameters swapped, and you have deadlock!

 Thankfully, the C++ Standard Library has a cure for this in the form of std::lock—
a function that can lock two or more mutexes at once without risk of deadlock. The
example in the next listing shows how to use this for a simple swap operation. 

class some_big_object;
void swap(some_big_object& lhs,some_big_object& rhs);

class X
{
private:
    some_big_object some_detail;
    std::mutex m;
public:
    X(some_big_object const& sd):some_detail(sd){}

    friend void swap(X& lhs, X& rhs)
    {
        if(&lhs==&rhs)
            return;
        std::lock(lhs.m,rhs.m);               
        std::lock_guard<std::mutex> lock_a(lhs.m,std::adopt_lock);    
        std::lock_guard<std::mutex> lock_b(rhs.m,std::adopt_lock);   
        swap(lhs.some_detail,rhs.some_detail);
    }
};

First, the arguments are checked to ensure they are different instances, because
attempting to acquire a lock on a std::mutex when you already hold it is undefined
behavior. (A mutex that does permit multiple locks by the same thread is provided in
the form of std::recursive_mutex. See section 3.3.3 for details.) Then, the call to
std::lock() B locks the two mutexes, and two std::lock_guard instances are con-
structed c, d, one for each mutex. The std::adopt_lock parameter is supplied in
addition to the mutex to indicate to the std::lock_guard objects that the mutexes
are already locked, and they should just adopt the ownership of the existing lock on
the mutex rather than attempt to lock the mutex in the constructor.

 This ensures that the mutexes are correctly unlocked on function exit in the gen-
eral case where the protected operation might throw an exception; it also allows for a
simple return. Also, it’s worth noting that locking either lhs.m or rhs.m inside the call
to std::lock can throw an exception; in this case, the exception is propagated out
of std::lock. If std::lock has successfully acquired a lock on one mutex and an

Listing 3.6 Using std::lock() and std::lock_guard in a swap operation
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exception is thrown when it tries to acquire a lock on the other mutex, this first lock is
released automatically: std::lock provides all-or-nothing semantics with regard to
locking the supplied mutexes.

 Although std::lock can help you avoid deadlock in those cases where you need to
acquire two or more locks together, it doesn’t help if they’re acquired separately. In
that case you have to rely on your discipline as developers to ensure you don’t get
deadlock. This isn’t easy: deadlocks are one of the nastiest problems to encounter in
multithreaded code and are often unpredictable, with everything working fine the
majority of the time. There are, however, some relatively simple rules that can help
you to write deadlock-free code.

3.2.5 Further guidelines for avoiding deadlock

Deadlock doesn’t just occur with locks, although that’s the most frequent cause; you
can create deadlock with two threads and no locks just by having each thread call
join() on the std::thread object for the other. In this case, neither thread can make
progress because it’s waiting for the other to finish, just like the children fighting over
their toys. This simple cycle can occur anywhere that a thread can wait for another
thread to perform some action if the other thread can simultaneously be waiting for
the first thread, and it isn’t limited to two threads: a cycle of three or more threads will
still cause deadlock. The guidelines for avoiding deadlock all boil down to one idea:
don’t wait for another thread if there’s a chance it’s waiting for you. The individual
guidelines provide ways of identifying and eliminating the possibility that the other
thread is waiting for you.

AVOID NESTED LOCKS

The first idea is the simplest: don’t acquire a lock if you already hold one. If you stick
to this guideline, it’s impossible to get a deadlock from the lock usage alone because
each thread only ever holds a single lock. You could still get deadlock from other
things (like the threads waiting for each other), but mutex locks are probably the
most common cause of deadlock. If you need to acquire multiple locks, do it as a sin-
gle action with std::lock in order to acquire them without deadlock.

AVOID CALLING USER-SUPPLIED CODE WHILE HOLDING A LOCK

This is a simple follow-on from the previous guideline. Because the code is user sup-
plied, you have no idea what it could do; it could do anything, including acquiring a
lock. If you call user-supplied code while holding a lock, and that code acquires a lock,
you’ve violated the guideline on avoiding nested locks and could get deadlock. Some-
times this is unavoidable; if you’re writing generic code such as the stack in section 3.2.3,
every operation on the parameter type or types is user-supplied code. In this case, you
need a new guideline.

ACQUIRE LOCKS IN A FIXED ORDER

If you absolutely must acquire two or more locks, and you can’t acquire them as a sin-
gle operation with std::lock, the next-best thing is to acquire them in the same
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for reducing the time that the lock is held is less. More of the operation steps will
require a lock on the same mutex, so the lock must be held longer. This double
whammy of a cost is thus also a double incentive to move toward finer-grained locking
wherever possible.

 As this example shows, locking at an appropriate granularity isn’t only about
the amount of data locked; it’s also about how long the lock is held and what oper-
ations are performed while the lock is held. In general, a lock should be held for only the
minimum possible time needed to perform the required operations. This also means that time-
consuming operations such as acquiring another lock (even if you know it won’t dead-
lock) or waiting for I/O to complete shouldn’t be done while holding a lock unless
absolutely necessary.

 In listings 3.6 and 3.9, the operation that required locking the two mutexes was a
swap operation, which obviously requires concurrent access to both objects. Suppose
instead you were trying to compare a simple data member that was just a plain int.
Would this make a difference? ints are cheap to copy, so you could easily copy the
data for each object being compared while only holding the lock for that object and
then compare the copied values. This would mean that you were holding the lock on
each mutex for the minimum amount of time and also that you weren’t holding one
lock while locking another. The following listing shows a class Y for which this is the
case and a sample implementation of the equality comparison operator.

class Y
{
private:
    int some_detail;
    mutable std::mutex m;

    int get_detail() const
    {
        std::lock_guard<std::mutex> lock_a(m);     
        return some_detail;
    }
public:
    Y(int sd):some_detail(sd){}

    friend bool operator==(Y const& lhs, Y const& rhs)
    {
        if(&lhs==&rhs)
            return true;
        int const lhs_value=lhs.get_detail();             
        int const rhs_value=rhs.get_detail();       
        return lhs_value==rhs_value;          
    }
};

In this case, the comparison operator first retrieves the values to be compared by call-
ing the get_detail() member function c, d. This function retrieves the value while

Listing 3.10 Locking one mutex at a time in a comparison operator
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protecting it with a lock B. The comparison operator then compares the retrieved
values e. Note, however, that as well as reducing the locking periods so that only one
lock is held at a time (and thus eliminating the possibility of deadlock), this has subtly
changed the semantics of the operation compared to holding both locks together. In list-
ing 3.10, if the operator returns true, it means that the value of lhs.some_detail at
one point in time is equal to the value of rhs.some_detail at another point in time.
The two values could have been changed in any way in between the two reads; the values
could have been swapped in between c and d, for example, thus rendering the com-
parison meaningless. The equality comparison might thus return true to indicate that
the values were equal, even though there was never an instant in time when the values
were actually equal. It’s therefore important to be careful when making such changes
that the semantics of the operation are not changed in a problematic fashion: if you
don’t hold the required locks for the entire duration of an operation, you’re exposing yourself to
race conditions.

 Sometimes, there just isn’t an appropriate level of granularity because not all
accesses to the data structure require the same level of protection. In this case, it
might be appropriate to use an alternative mechanism, instead of a plain std::mutex.

3.3 Alternative facilities for protecting shared data
Although they’re the most general mechanism, mutexes aren’t the only game in town
when it comes to protecting shared data; there are alternatives that provide more
appropriate protection in specific scenarios.

 One particularly extreme (but remarkably common) case is where the shared data
needs protection only from concurrent access while it’s being initialized, but after that
no explicit synchronization is required. This might be because the data is read-only
once created, and so there are no possible synchronization issues, or it might be
because the necessary protection is performed implicitly as part of the operations on
the data. In either case, locking a mutex after the data has been initialized, purely in
order to protect the initialization, is unnecessary and a needless hit to performance.
It’s for this reason that the C++ Standard provides a mechanism purely for protecting
shared data during initialization.

3.3.1 Protecting shared data during initialization
Suppose you have a shared resource that’s so expensive to construct that you want to
do so only if it’s actually required; maybe it opens a database connection or allocates a
lot of memory. Lazy initialization such as this is common in single-threaded code—
each operation that requires the resource first checks to see if it has been initialized
and then initializes it before use if not:

std::shared_ptr<some_resource> resource_ptr;
void foo()
{
    if(!resource_ptr)
    {
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to obtain shared access. This is used just the same as std::unique_lock, except that
multiple threads may have a shared lock on the same boost::shared_mutex at the
same time. The only constraint is that if any thread has a shared lock, a thread that
tries to acquire an exclusive lock will block until all other threads have relinquished
their locks, and likewise if any thread has an exclusive lock, no other thread may
acquire a shared or exclusive lock until the first thread has relinquished its lock.

 The following listing shows a simple DNS cache like the one just described, using a
std::map to hold the cached data, protected using a boost::shared_mutex.

#include <map>
#include <string>
#include <mutex>
#include <boost/thread/shared_mutex.hpp>

class dns_entry;

class dns_cache
{
    std::map<std::string,dns_entry> entries;
    mutable boost::shared_mutex entry_mutex;
public:
    dns_entry find_entry(std::string const& domain) const
    {
        boost::shared_lock<boost::shared_mutex> lk(entry_mutex);    
        std::map<std::string,dns_entry>::const_iterator const it=
            entries.find(domain);
        return (it==entries.end())?dns_entry():it->second;
    }
    void update_or_add_entry(std::string const& domain,
                             dns_entry const& dns_details)
    {
        std::lock_guard<boost::shared_mutex> lk(entry_mutex);       
        entries[domain]=dns_details;
    }
};

In listing 3.13, find_entry() uses an instance of boost::shared_lock<> to protect it
for shared, read-only access B; multiple threads can therefore call find_entry()
simultaneously without problems. On the other hand, update_or_add_entry() uses
an instance of std::lock_guard<> to provide exclusive access while the table is
updated c; not only are other threads prevented from doing updates in a call update_
or_add_entry(), but threads that call find_entry() are blocked too.

3.3.3 Recursive locking
With std::mutex, it’s an error for a thread to try to lock a mutex it already owns, and
attempting to do so will result in undefined behavior. However, in some circumstances it
would be desirable for a thread to reacquire the same mutex several times without
having first released it. For this purpose, the C++ Standard Library provides

Listing 3.13 Protecting a data structure with a boost::shared_mutex
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4.1 Waiting for an event or other condition
Suppose you’re traveling on an overnight train. One way to ensure you get off at the
right station would be to stay awake all night and pay attention to where the train
stops. You wouldn’t miss your station, but you’d be tired when you got there. Alterna-
tively, you could look at the timetable to see when the train is supposed to arrive, set
your alarm a bit before, and go to sleep. That would be OK; you wouldn’t miss your
stop, but if the train got delayed, you’d wake up too early. There’s also the possibility
that your alarm clock’s batteries would die, and you’d sleep too long and miss your sta-
tion. What would be ideal is if you could just go to sleep and have somebody or some-
thing wake you up when the train gets to your station, whenever that is.

 How does that relate to threads? Well, if one thread is waiting for a second thread
to complete a task, it has several options. First, it could just keep checking a flag in
shared data (protected by a mutex) and have the second thread set the flag when it
completes the task. This is wasteful on two counts: the thread consumes valuable pro-
cessing time repeatedly checking the flag, and when the mutex is locked by the wait-
ing thread, it can’t be locked by any other thread. Both of these work against the
thread doing the waiting, because they limit the resources available to the thread
being waited for and even prevent it from setting the flag when it’s done. This is akin
to staying awake all night talking to the train driver: he has to drive the train more
slowly because you keep distracting him, so it takes longer to get there. Similarly, the
waiting thread is consuming resources that could be used by other threads in the sys-
tem and may end up waiting longer than necessary.

 A second option is to have the waiting thread sleep for small periods between the
checks using the std::this_thread::sleep_for() function (see section 4.3):

bool flag;
std::mutex m;

void wait_for_flag()
{
    std::unique_lock<std::mutex> lk(m);
    while(!flag)                                   
    {
        lk.unlock();                       
        std::this_thread::sleep_for(std::chrono::milliseconds(100));  
        lk.lock();     
    }
}

In the loop, the function unlocks the mutex B before the sleep c and locks it again
afterward d, so another thread gets a chance to acquire it and set the flag.

 This is an improvement, because the thread doesn’t waste processing time while
it’s sleeping, but it’s hard to get the sleep period right. Too short a sleep in between
checks and the thread still wastes processing time checking; too long a sleep and the
thread will keep on sleeping even when the task it’s waiting for is complete, introduc-
ing a delay. It’s rare that this oversleeping will have a direct impact on the operation of

Sleep for 100 ms  c

Unlock the mutexb

Relock the mutexd
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the program, but it could mean dropped frames in a fast-paced game or overrunning
a time slice in a real-time application.

 The third, and preferred, option is to use the facilities from the C++ Standard
Library to wait for the event itself. The most basic mechanism for waiting for an event
to be triggered by another thread (such as the presence of additional work in the
pipeline mentioned previously) is the condition variable. Conceptually, a condition vari-
able is associated with some event or other condition, and one or more threads can wait
for that condition to be satisfied. When some thread has determined that the condi-
tion is satisfied, it can then notify one or more of the threads waiting on the condition
variable, in order to wake them up and allow them to continue processing.

4.1.1 Waiting for a condition with condition variables
The Standard C++ Library provides not one but two implementations of a condition
variable: std::condition_variable and std::condition_variable_any. Both of
these are declared in the <condition_variable> library header. In both cases, they
need to work with a mutex in order to provide appropriate synchronization; the for-
mer is limited to working with std::mutex, whereas the latter can work with anything
that meets some minimal criteria for being mutex-like, hence the _any suffix. Because
std::condition_variable_any is more general, there’s the potential for additional
costs in terms of size, performance, or operating system resources, so std::condition_
variable should be preferred unless the additional flexibility is required.

 So, how do you use a std::condition_variable to handle the example in the
introduction—how do you let the thread that’s waiting for work sleep until there’s
data to process? The following listing shows one way you could do this with a condi-
tion variable.

std::mutex mut;
std::queue<data_chunk> data_queue;   
std::condition_variable data_cond;

void data_preparation_thread()
{
    while(more_data_to_prepare())
    {
        data_chunk const data=prepare_data();
        std::lock_guard<std::mutex> lk(mut);
        data_queue.push(data);              
        data_cond.notify_one();   
    }
}

void data_processing_thread()
{
    while(true)
    {
        std::unique_lock<std::mutex> lk(mut);   

Listing 4.1 Waiting for data to process with a std::condition_variable

b

c
d

e
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        data_cond.wait(
            lk,[]{return !data_queue.empty();});   
        data_chunk data=data_queue.front();
        data_queue.pop();
        lk.unlock();        
        process(data);
        if(is_last_chunk(data))
            break;
    }
}

First off, you have a queue B that’s used to pass the data between the two threads.
When the data is ready, the thread preparing the data locks the mutex protecting the
queue using a std::lock_guard and pushes the data onto the queue c. It then calls
the notify_one() member function on the std::condition_variable instance to
notify the waiting thread (if there is one) d.

 On the other side of the fence, you have the processing thread. This thread first
locks the mutex, but this time with a std::unique_lock rather than a std::lock_
guard e—you’ll see why in a minute. The thread then calls wait() on the std::
condition_variable, passing in the lock object and a lambda function that expresses
the condition being waited for f. Lambda functions are a new feature in C++11 that
allows you to write an anonymous function as part of another expression, and they’re
ideally suited for specifying predicates for standard library functions such as wait().
In this case, the simple lambda function []{return !data_queue.empty();} checks
to see if the data_queue is not empty()—that is, there’s some data in the queue ready
for processing. Lambda functions are described in more detail in appendix A, sec-
tion A.5.

 The implementation of wait() then checks the condition (by calling the supplied
lambda function) and returns if it’s satisfied (the lambda function returned true). If
the condition isn’t satisfied (the lambda function returned false), wait() unlocks
the mutex and puts the thread in a blocked or waiting state. When the condition vari-
able is notified by a call to notify_one() from the data-preparation thread, the thread
wakes from its slumber (unblocks it), reacquires the lock on the mutex, and checks
the condition again, returning from wait() with the mutex still locked if the condi-
tion has been satisfied. If the condition hasn’t been satisfied, the thread unlocks the
mutex and resumes waiting. This is why you need the std::unique_lock rather than
the std::lock_guard—the waiting thread must unlock the mutex while it’s waiting
and lock it again afterward, and std::lock_guard doesn’t provide that flexibility. If
the mutex remained locked while the thread was sleeping, the data-preparation
thread wouldn’t be able to lock the mutex to add an item to the queue, and the wait-
ing thread would never be able to see its condition satisfied.

 Listing 4.1 uses a simple lambda function for the wait f, which checks to see if the
queue is not empty, but any function or callable object could be passed. If you already
have a function to check the condition (perhaps because it’s more complicated than a
simple test like this), then this function can be passed in directly; there’s no need

f

g
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 So, what constitutes an atomic operation, and how can these be used to enforce
ordering?

5.2 Atomic operations and types in C++
An atomic operation is an indivisible operation. You can’t observe such an operation
half-done from any thread in the system; it’s either done or not done. If the load oper-
ation that reads the value of an object is atomic, and all modifications to that object are
also atomic, that load will retrieve either the initial value of the object or the value
stored by one of the modifications.

 The flip side of this is that a nonatomic operation might be seen as half-done by
another thread. If that operation is a store, the value observed by another thread
might be neither the value before the store nor the value stored but something else. If
the nonatomic operation is a load, it might retrieve part of the object, have another
thread modify the value, and then retrieve the remainder of the object, thus retrieving
neither the first value nor the second but some combination of the two. This is a sim-
ple problematic race condition, as described in chapter 3, but at this level it may con-
stitute a data race (see section 5.1) and thus cause undefined behavior.

 In C++, you need to use an atomic type to get an atomic operation in most cases, so
let’s look at those.

5.2.1 The standard atomic types
The standard atomic types can be found in the <atomic> header. All operations on such
types are atomic, and only operations on these types are atomic in the sense of the lan-
guage definition, although you can use mutexes to make other operations appear
atomic. In actual fact, the standard atomic types themselves might use such emula-
tion: they (almost) all have an is_lock_free() member function, which allows the
user to determine whether operations on a given type are done directly with atomic
instructions (x.is_lock_free() returns true) or done by using a lock internal to the
compiler and library (x.is_lock_free() returns false).

 The only type that doesn’t provide an is_lock_free() member function is
std::atomic_flag. This type is a really simple Boolean flag, and operations on this type
are required to be lock-free; once you have a simple lock-free Boolean flag, you can use
that to implement a simple lock and thus implement all the other atomic types using that
as a basis. When I said really simple, I meant it: objects of type std::atomic_flag are ini-
tialized to clear, and they can then either be queried and set (with the test_and_set()
member function) or cleared (with the clear() member function). That’s it: no assign-
ment, no copy construction, no test and clear, no other operations at all.

 The remaining atomic types are all accessed through specializations of the
std::atomic<> class template and are a bit more full-featured but may not be lock-
free (as explained previously). On most popular platforms it’s expected that the
atomic variants of all the built-in types (such as std::atomic<int> and std::atomic
<void*>) are indeed lock-free, but it isn’t required. As you’ll see shortly, the interface
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There are four important things to take away from this:

! Every variable is an object, including those that are members of other objects.
! Every object occupies at least one memory location. 
! Variables of fundamental type such as int or char are exactly one memory loca-

tion, whatever their size, even if they’re adjacent or part of an array.
! Adjacent bit fields are part of the same memory location.

I’m sure you’re wondering what this has to do with concurrency, so let’s take a look.

5.1.2 Objects, memory locations, and concurrency
Now, here’s the part that’s crucial for multithreaded applications in C++: everything
hinges on those memory locations. If two threads access separate memory locations,
there’s no problem: everything works fine. On the other hand, if two threads access
the same memory location, then you have to be careful. If neither thread is updating the
memory location, you’re fine; read-only data doesn’t need protection or synchroniza-
tion. If either thread is modifying the data, there’s a potential for a race condition, as
described in chapter 3.

 In order to avoid the race condition, there has to be an enforced ordering
between the accesses in the two threads. One way to ensure there’s a defined ordering
is to use mutexes as described in chapter 3; if the same mutex is locked prior to both
accesses, only one thread can access the memory location at a time, so one must hap-
pen before the other. The other way is to use the synchronization properties of atomic
operations (see section 5.2 for the definition of atomic operations) either on the same
or other memory locations to enforce an ordering between the accesses in the two

Figure 5.1 The division of a struct into objects and memory locations
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of each specialization reflects the properties of the type; bitwise operations such as &=
aren’t defined for plain pointers, so they aren’t defined for atomic pointers either,
for example.

 In addition to using the std::atomic<> class template directly, you can use the set
of names shown in table 5.1 to refer to the implementation-supplied atomic types.
Because of the history of how atomic types were added to the C++ Standard, these
alternative type names may refer either to the corresponding std::atomic<> special-
ization or to a base class of that specialization. Mixing these alternative names with
direct naming of std::atomic<> specializations in the same program can therefore
lead to nonportable code.

As well as the basic atomic types, the C++ Standard Library also provides a set of
typedefs for the atomic types corresponding to the various nonatomic Standard
Library typedefs such as std::size_t. These are shown in table 5.2.

 That’s a lot of types! There’s a rather simple pattern to it; for a standard typedef T,
the corresponding atomic type is the same name with an atomic_ prefix: atomic_T. The
same applies to the built-in types, except that signed is abbreviated as just s, unsigned as

Table 5.1 The alternative names for the standard atomic types and their corresponding std::atomic<>
specializations

Atomic type Corresponding specialization

atomic_bool std::atomic<bool>

atomic_char std::atomic<char>

atomic_schar std::atomic<signed char>

atomic_uchar std::atomic<unsigned char>

atomic_int std::atomic<int>

atomic_uint std::atomic<unsigned>

atomic_short std::atomic<short>

atomic_ushort std::atomic<unsigned short>

atomic_long std::atomic<long>

atomic_ulong std::atomic<unsigned long>

atomic_llong std::atomic<long long>

atomic_ullong std::atomic<unsigned long long>

atomic_char16_t std::atomic<char16_t>

atomic_char32_t std::atomic<char32_t>

atomic_wchar_t std::atomic<wchar_t>
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atomic_ prefix (for example, std::atomic_load()). These functions are then over-
loaded for each of the atomic types. Where there’s opportunity for specifying a memory-
ordering tag, they come in two varieties: one without the tag and one with an _explicit
suffix and an additional parameter or parameters for the memory-ordering tag or tags
(for example, std::atomic_store(&atomic_var,new_value) versus std::atomic_
store_explicit(&atomic_var,new_value,std::memory_order_release). Whereas the
atomic object being referenced by the member functions is implicit, all the free func-
tions take a pointer to the atomic object as the first parameter.

 For example, std::atomic_is_lock_free() comes in just one variety (though over-
loaded for each type), and std::atomic_is_lock_free(&a) returns the same value as
a.is_lock_free() for an object of atomic type a. Likewise, std::atomic_load(&a) is
the same as a.load(), but the equivalent of a.load(std::memory_order_acquire)
is std::atomic_load_explicit(&a, std::memory_order_acquire).

 The free functions are designed to be C-compatible, so they use pointers rather
than references in all cases. For example, the first parameter of the compare_
exchange_weak() and compare_exchange_strong() member functions (the expected
value) is a reference, whereas the second parameter of std::atomic_compare_
exchange_weak() (the first is the object pointer) is a pointer. std::atomic_
compare_exchange_weak_explicit() also requires both the success and failure memory

Table 5.3 The operations available on atomic types

Operation
atomic_
flag

atomic
<bool>

atomic
<T*>

atomic
<integral-

type>

atomic
<other-
type>

test_and_set !

clear !

is_lock_free ! ! ! !

load ! ! ! !

store ! ! ! !

exchange ! ! ! !

compare_exchange_weak, 
compare_exchange_strong

! ! ! !

fetch_add, += ! !

fetch_sub, -= ! !

fetch_or, |= !

fetch_and, &= !

fetch_xor, ^= !

++, -- ! !
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orders to be specified, whereas the compare/exchange member functions have both a
single memory order form (with a default of std::memory_order_seq_cst) and an
overload that takes the success and failure memory orders separately.

 The operations on std::atomic_flag buck the trend, in that they spell out the “flag”
part in the names: std::atomic_flag_test_and_set(), std::atomic_flag_clear(),
although the additional variants that specify the memory ordering again have the
_explicit suffix: std::atomic_flag_test_and_set_explicit() and std::atomic_
flag_clear_explicit().

 The C++ Standard Library also provides free functions for accessing instances of
std::shared_ptr<> in an atomic fashion. This is a break from the principle that only
the atomic types support atomic operations, because std::shared_ptr<> is quite defi-
nitely not an atomic type. However, the C++ Standards Committee felt it was suffi-
ciently important to provide these extra functions. The atomic operations available
are load, store, exchange, and compare/exchange, which are provided as overloads of the
same operations on the standard atomic types, taking a std::shared_ptr<>* as
the first argument:

std::shared_ptr<my_data> p;
void process_global_data()
{
    std::shared_ptr<my_data> local=std::atomic_load(&p);
    process_data(local);
}
void update_global_data()
{
    std::shared_ptr<my_data> local(new my_data);
    std::atomic_store(&p,local);
}

As with the atomic operations on other types, the _explicit variants are also pro-
vided to allow you to specify the desired memory ordering, and the std::atomic_
is_lock_free() function can be used to check whether the implementation uses
locks to ensure the atomicity.

 As described in the introduction, the standard atomic types do more than just
avoid the undefined behavior associated with a data race; they allow the user to
enforce an ordering of operations between threads. This enforced ordering is the
basis of the facilities for protecting data and synchronizing operations such as
std::mutex and std::future<>. With that in mind, let’s move on to the real meat of
this chapter: the details of the concurrency aspects of the memory model and how
atomic operations can be used to synchronize data and enforce ordering.

5.3 Synchronizing operations and enforcing ordering
Suppose you have two threads, one of which is populating a data structure to be read
by the second. In order to avoid a problematic race condition, the first thread sets a
flag to indicate that the data is ready, and the second thread doesn’t read the data
until the flag is set. The following listing shows such a scenario.
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#include <vector>
#include <atomic>
#include <iostream>

std::vector<int> data;
std::atomic<bool> data_ready(false);

void reader_thread()
{
    while(!data_ready.load())   
    {
        std::this_thread::sleep(std::milliseconds(1));
    }
    std::cout<<”The answer=”<<data[0]<<”\n”;   
}
void writer_thread()
{
    data.push_back(42);       
    data_ready=true;    
}

Leaving aside the inefficiency of the loop waiting for the data to be ready B, you
really need this to work, because otherwise sharing data between threads becomes
impractical: every item of data is forced to be atomic. You’ve already learned that it’s
undefined behavior to have nonatomic reads c and writes d accessing the same
data without an enforced ordering, so for this to work there must be an enforced
ordering somewhere.

 The required enforced ordering comes from the operations on the std::
atomic<bool> variable data_ready; they provide the necessary ordering by virtue of
the memory model relations happens-before and synchronizes-with. The write of the data d
happens-before the write to the data_ready flag e, and the read of the flag B hap-
pens-before the read of the data c. When the value read from data_ready B is true,
the write synchronizes-with that read, creating a happens-before relationship. Because
happens-before is transitive, the write to the data d happens-before the write to the
flag e, which happens-before the read of the true value from the flag B, which
happens-before the read of the data c, and you have an enforced ordering: the write
of the data happens-before the read of the data and everything is OK. Figure 5.2 shows
the important happens-before relationships in the two threads. I’ve added a couple of
iterations of the while loop from the reader thread.

 All this might seem fairly intuitive: of course the operation that writes a value hap-
pens before an operation that reads that value! With the default atomic operations,
that’s indeed true (which is why this is the default), but it does need spelling out: the
atomic operations also have other options for the ordering requirements, which I’ll
come to shortly.

 Now that you’ve seen happens-before and synchronizes-with in action, it’s time to
look at what they really mean. I’ll start with synchronizes-with.

Listing 5.2 Reading and writing variables from different threads

b

c

d
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class thread_pool
{
    std::atomic_bool done;
    thread_safe_queue<std::function<void()> > work_queue;      
    std::vector<std::thread> threads;                    
    join_threads joiner;             

    void worker_thread()
    {
        while(!done)     
        {
            std::function<void()> task;
            if(work_queue.try_pop(task))     
            {
                task();     
            }
            else
            {
                std::this_thread::yield();    
            }
        }
    }

public:
    thread_pool():
        done(false),joiner(threads)
    {
        unsigned const thread_count=std::thread::hardware_concurrency(); 

        try
        {
            for(unsigned i=0;i<thread_count;++i)
            {
                threads.push_back(
                    std::thread(&thread_pool::worker_thread,this));   
            }
        }
        catch(...)
        {
            done=true;     
            throw;
        }
    }

    ~thread_pool()
    {
        done=true;         
    }

    template<typename FunctionType>
    void submit(FunctionType f)
    {
        work_queue.push(std::function<void()>(f));    
    }
};

Listing 9.1 Simple thread pool
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This implementation has a vector of worker threads c and uses one of the thread-safe
queues from chapter 6 B to manage the queue of work. In this case, users can’t wait
for the tasks, and they can’t return any values, so you can use std::function<void()>
to encapsulate your tasks. The submit() function then wraps whatever function or
callable object is supplied inside a std::function<void()> instance and pushes it on
the queue 1@.

 The threads are started in the constructor: you use std::thread::hardware_
concurrency() to tell you how many concurrent threads the hardware can support i,
and you create that many threads running your worker_thread() member function j.

 Starting a thread can fail by throwing an exception, so you need to ensure that any
threads you’ve already started are stopped and cleaned up nicely in this case. This is
achieved with a try-catch block that sets the done flag when an exception is thrown 1),
alongside an instance of the join_threads class from chapter 8 d to join all the
threads. This also works with the destructor: you can just set the done flag 1!, and
the join_threads instance will ensure that all the threads have completed before the
pool is destroyed. Note that the order of declaration of the members is important:
both the done flag and the worker_queue must be declared before the threads vector,
which must in turn be declared before the joiner. This ensures that the members are
destroyed in the right order; you can’t destroy the queue safely until all the threads
have stopped, for example.

 The worker_thread function itself is quite simple: it sits in a loop waiting until the
done flag is set e, pulling tasks off the queue f and executing them g in the mean-
time. If there are no tasks on the queue, the function calls std::this_thread::
yield() to take a small break h and give another thread a chance to put some work
on the queue before it tries to take some off again the next time around.

 For many purposes such a simple thread pool will suffice, especially if the tasks
are entirely independent and don’t return any values or perform any blocking oper-
ations. But there are also many circumstances where such a simple thread pool may
not adequately address your needs and yet others where it can cause problems such
as deadlock. Also, in the simple cases you may well be better served using std::
async as in many of the examples in chapter 8. Throughout this chapter, we’ll look
at more complex thread pool implementations that have additional features either
to address user needs or reduce the potential for problems. First up: waiting for the
tasks we’ve submitted.

9.1.2 Waiting for tasks submitted to a thread pool
In the examples in chapter 8 that explicitly spawned threads, after dividing the work
between threads, the master thread always waited for the newly spawned threads to
finish, to ensure that the overall task was complete before returning to the caller. With
thread pools, you’d need to wait for the tasks submitted to the thread pool to com-
plete, rather than the worker threads themselves. This is similar to the way that the
std::async-based examples in chapter 8 waited for the futures. With the simple
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