C++isfun-Part 15

at Turbine/Warner Bros.!



Syllabus

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files — April 8-10

4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game Al algorithms April 15-17

Project 1 Due — April 17

5) More Al: search, heuristics, optimization, decision trees, supervised/unsupervised
learning — April 22-24

6) Game API and/or event-oriented programming, model view controller, map reduce
filter — April 29, May 1

7) Basic threads models and some simple databases SQLite May 6-8

8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15

9) Threads, Atomic, and Exceptions, more May 20

10) Gesture recognition & depth controllers like the Microsoft Kinect, Network
Programming & TCP/IP, OSC May 27

11) Selected Topics June 3

12) Working on student projects - June 10

Final project presentations Project 3/Final Project Due June 10




CONCURRENCY WITH MULTIPLE PROCESSES

The first way to make use of concurrency within an appli-
cation is to divide the application into multiple, separate,
single-threaded processes that are run at the same time,
much as you can run your web browser and word proces-
sor at the same time. These separate processes can then
pass messages to each other through all the normal inter-
process communication channels (signals, sockets, files,
pipes, and so on), as shown in figure 1.3. One downside is
that such communication between processes is often
either complicated to set up or slow or both, because
operating systems typically provide a lot of protection
between processes to avoid one process accidentally modi-
fying data belonging to another process. Another down-
side is that there’s an inherent overhead in running
multiple processes: it takes time to start a process, the
operating system must devote internal resources to man-
aging the process, and so forth.

Process 1

Thread

Interprocess
communication

Operating
system

Thread

Process 2

Figure 1.3 Communication
between a pair of processes
running concurrently



The shared address space and lack of protection of data
between threads makes the overhead associated with using multi-
ple threads much smaller than that from using multiple pro-
cesses, because the operating system has less bookkeeping to do.
But the flexibility of shared memory also comes with a price: if
data is accessed by multiple threads, the application programmer
must ensure that the view of data seen by each thread is consistent
whenever it is accessed. The issues surrounding sharing data
between threads and the tools to use and guidelines to follow to
avoid problems are covered throughout this book, notably in
chapters 3, 4, 5, and 8. The problems are not insurmountable,
provided suitable care is taken when writing the code, but they do
mean that a great deal of thought must go into the communica-
tion between threads.

Process

Thread 1

Shared memory

Thread 2

Figure 1.4 Commu-
nication between

a pair of threads
running concurrently
in a single process



Hello, Concurrent World

Let’s start with a classic example: a program to print “Hello World.” A really simple
Hello, World program that runs in a single thread is shown here, to serve as a baseline
when we move to multiple threads:

#include <iostream>

int main{()

{
}

All this program does is write “Hello World” to the standard output stream. Let’s com-

std: :cout<<"Hello World\n";

pare it to the simple Hello, Concurrent World program shown in the following listing,
which starts a separate thread to display the message.

#include <iostream>
#include <threads> <@—"

void hello() +@
{

}

int main{()

{

std: :cout<<"Hello Concurrent World\n";

std: :thread t (hello); 4—‘,

t.join(); + 0
}
The first difference is the extra #include <thread> @. The declarations for the multi-
threading support in the Standard C++ Library are in new headers: the functions and
classes for managing threads are declared in <thread>, whereas those for protecting
shared data are declared in other headers.



this case, the std: :thread object named t @) has the new function hello() as its ini-
tial function.

This is the next difference: rather than just writing directly to standard output or
calling hello() from main(), this program launches a whole new thread to do it,
bringing the thread count to two—the initial thread that starts at main () and the new
thread that starts at hello ().

After the new thread has been launched @), the initial thread continues execution.
If it didn’t wait for the new thread to finish, it would merrily continue to the end of
main () and thus end the program—possibly before the new thread had had a chance
to run. This is why the call to join() is there @—as described in chapter 2, this causes
the calling thread (in main()) to wait for the thread associated with the std: :thread
object, in this case, t.



Class Exercise, join a thread

H#include <iostream>
H#include <thread>

// int main() {
// std::cout<<"Hello World\n";

/1'}

void hello(){
std::cout<<"Hello Concurrent World\n";

}

int main() {
std::thread t(hello);
t.join();

}

Hello Concurrent World



Launching a thread

As you saw in chapter 1, threads are started by constructing a std: : thread object that
specifies the task to run on that thread. In the simplest case, that task is just a plain,
ordinary void-returning function that takes no parameters. This function runs on its
own thread until it returns, and then the thread stops. At the other extreme, the task
could be a function object that takes additional parameters and performs a series of
independent operations that are specified through some kind of messaging system
while it’s running, and the thread stops only when it’s signaled to do so, again via
some kind of messaging system. It doesn’t matter what the thread is going to do or
where it’s launched from, but starting a thread using the C++ Thread Library always
boils down to constructing a std: : thread object:

void do_some work() ;
std::thread my thread(do_some work) ;

This is just about as simple as it gets. Of course, you have to make sure that the
<thread> header is included so the compiler can see the definition of the std::
thread class. As with much of the C++ Standard Library, std: : thread works with any
callable type, so you can pass an instance of a class with a function call operator to the
std: :thread constructor instead:

class background task

{
public:
void operator () () const

{

do something() ;
do_something else() ;

}
yi
background task £f;
std::thread my thread(f);

In this case, the supplied function object is copied into the storage belonging to the
newly created thread of execution and invoked from there. It’s therefore essential that
the copy behave equivalently to the original, or the result may not be what’s expected.



For example,
std: :thread my thread(background task());

declares a function my_thread that takes a single parameter (of type pointer to a func-
tion taking no parameters and returning a background task object) and returns a
std: :thread object, rather than launching a new thread. You can avoid this by nam-
ing your function object as shown previously, by using an extra set of parentheses, or
by using the new uniform initialization syntax, for example:

std: :thread my thread((background task())) ;
std::thread my thread{background task()}; @

In the first example @), the extra parentheses prevent interpretation as a function
declaration, thus allowing my thread to be declared as a variable of type std: : thread.
The second example @ uses the new uniform initialization syntax with braces rather
than parentheses, and thus would also declare a variable.

One type of callable object that avoids this problem is a lambda expression. This is a
new feature from C++11 which essentially allows you to write a local function, possibly
capturing some local variables and avoiding the need of passing additional arguments
(see section 2.2). For full details on lambda expressions, see appendix A, section A.5.
The previous example can be written using a lambda expression as follows:

std::thread my thread([] (
do_something () ;
do_something else() ;

1)



struct func

{

int& 1i;
func (int& 1 ) :i(i ) {}

void operator () ()

{

for (unsigned j=0;3<1000000;++7)
{ Potential access to

do_something (i) ; dangling reference

}
}i

void oops ()

{

int some local state=0;

func my func(some local state) ; Don’t wait

std::thread my thread(my func) ; for thread New thread

my thread.detach() ; to finish j might still
} be running

In this case, the new thread associated with my thread will probably still be running
when oops exits @, because you've explicitly decided not to wait for it by calling
detach() @. If the thread s still running, then the next call to do_something (i) @
will access an already destroyed variable. This is just like normal single-threaded
code—allowing a pointer or reference to a local variable to persist beyond the func-
tion exit is never a good idea—but it’s easier to make the mistake with multithreaded
code, because it isn’t necessarily immediately apparent that this has happened.

One common way to handle this scenario is to make the thread function self-
contained and copy the data into the thread rather than sharing the data. If you use a
callable object for your thread function, that object is itself copied into the thread, so
the original object can be destroyed immediately. But you still need to be wary of
objects containing pointers or references, such as that from listing 2.1. In particular,
it’s a bad idea to create a thread within a function that has access to the local variables
in that function, unless the thread is guaranteed to finish before the function exits.

Alternatively, you can ensure that the thread has completed execution before the
function exits by joining with the thread.



Transferring ownership of a thread

threads among three std: : thread instances, t1, t2, and t3:

void some function();
void some other function() ;

std::thread tl(some_function) ; q—‘)
std: :thread t2=std::move(tl) ;
tl=std::thread(some_other function); <44€,

std: :thread t3;

t3=std: :move (t2) ; <]_9 ? This assignment will

tl=std: :move (t3) ; terminate program!

First, a new thread is started @ and associated with t1. Ownership is then transferred
over to t2 when t2 is constructed, by invoking std: :move () to explicitly move owner-
ship @. At this point, t1 no longer has an associated thread of execution; the thread
running some_function is now associated with t2.

Then, a new thread is started and associated with a temporary std::thread
object @. The subsequent transfer of ownership into t1 doesn’t require a call to std: :
move () to explicitly move ownership, because the owner is a temporary object—moving
from temporaries is automatic and implicit.

t3 is default constructed @), which means that it’s created without any associated
thread of execution. Ownership of the thread currently associated with t2 is transferred
into t3 @, again with an explicit call to std: :move (), because t2 is a named object. After
all these moves, t1 is associated with the thread running some other function, t2 hasno
associated thread, and t3 is associated with the thread running some_function.

The final move @ transfers ownership of the thread running some_function back
to t1 where it started. But in this case t1 already had an associated thread (which was
running some other function), so std::terminate() is called to terminate the
program. This is done for consistency with the std::thread destructor. You saw in
section 2.1.1 that you must explicitly wait for a thread to complete or detach it before
destruction, and the same applies to assignment: you can’t just “drop” a thread by
assigning a new value to the std: :thread object that manages it.

The move support in std::thread means that ownership can readily be trans-
ferred out of a function, as shown in the following listing.



Pthreads is another alternative

Creating Threads:

There is following routine which we use to create a POSIX thread:

#include <pthread.h>
pthread create (thread, attr, start_routine, arq)

Here pthread_create creates a new thread and makes it executable. This routine can be called any
number of times from anywhere within your code. Here is the description of the parameters:

Parameter Description
thread An opaque, unique identifier for the new thread returned by the subroutine.

i An opaque attribute object that may be used to set thread attributes. You
can specify a thread attributes object, or NULL for the default values.
start_routine The C++ routine that the thread will execute once itis created.

A single argument that may be passed to start_routine. It must be passed by
arg reference as a pointer cast of type void. NULL may be used if no argument
is to be passed.

The maximum number of threads that may be created by a process is implementation dependent. Once

created, threads are peers, and may create other threads. There is no implied hierarchy or dependency
between threads.

Terminating Threads:

There is following routine which we use to terminate a POSIX thread:

#include <pthread.h>
pthread exit (status)

Here pthread_exit is used to explicitly exit a thread. Typically, the pthread_exit() routine is called after a
thread has completed its work and is no longer required to exist.

If main() finishes before the threads it has created, and exits with pthread_exit(), the other threads will
continue to execute. Otherwise, they will be automatically terminated when main() finishes.



#include <iostream>
#include <pthread.h>

using namespace std; Class Exercise, using pthreads

#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
long tid;
tid = (long)threadid;
cout << "Hello World! Thread ID, " << tid << end];
pthread_exit(NULL);

}

int main ()

{
pthread_t threads[NUM_THREADS];

intrc;

inti; main() : creating thread, 0

for(i=0; i < NUM_THREADS; i++ ){ . . .
cout << "main() : creating thread, " << i << endl; maln() ) creatmg thread’ 1

rc = pthread_create(&threads]i], NULL, main() : creating thread, 2
oo eter foid T main() : creating thread, 3
cout << "Error:unable to create thread," << rc << endl; main() : creating thread, 4

\ exiti-1; Hello World! Thread ID, 0

} . Hello World! Thread ID, 1

} pthread_exit(NULL) Hello World! Thread ID, 2

Hello World! Thread ID, 3
Hello World! Thread ID, 4



#include <iostream>

#include <pthread.h>

using namespace std;

#define NUM_THREADS 5

struct thread_data{
int thread_id;
char *message;

2

void *PrintHello(void *threadarg)

{
struct thread_data *my_data;
my_data = (struct thread_data *) threadarg;
cout << "Thread ID : " << my_data->thread_id ;
cout << " Message : " << my_data->message << endl;
pthread_exit(NULL);

}

int main ()
{
pthread_t threads[NUM_THREADS];
struct thread_data td[NUM_THREADS];
int rc;
intl;
for(i=0; i < NUM_THREADS; i++ ){
cout <<"main() : creating thread, " << i << endl;
td[i].thread_id =i;
td[i].message = "This is message";
rc = pthread_create(&threadsli], NULL,
PrintHello, (void *)&td[i]);
if (rc){

cout << "Error:unable to create thread," << rc << endl;

exit(-1);
}

}
pthread_exit(NULL);

}

Passing Arguments to Threads

main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Thread ID : 1 Message : This is message
Thread ID : 0 Message : This is message
Thread ID : 2 Message : This is message
Thread ID : 3 Message : This is message
Thread ID : 4 Message : This is message



Joining and Detaching Threads:

There are following two routines which we can use to join or detach threads:

pthread join (threadid, status)
pthread detach (threadid)

The pthread_join() subroutine blocks the calling thread until the specified threadid thread terminates.
When a thread is created, one of its attributes defines whether it is joinable or detached. Only threads
that are created as joinable can be joined. If a thread is created as detached, it can never be joined.



#include <iostream>
#include <pthread.h>

using namespace std;
#define NUM_THREADS 5
void *wait(void *t)
{

inti;

long tid;

tid = (long)t;

sleep(1); //

cout << "Sleeping in thread " << endl;
cout << "Thread with id : " << tid << " ...

pthread_exit(NULL);
}

int main ()
{
intrc;
inti;
pthread_t threads[NUM_THREADS];
pthread_attr_t attr;
void *status;

// Initialize and set thread joinable
pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD CREATE_JOINABLE);

for(i=0; i < NUM_THREADS; i++ ){

exiting " << endl;

cout << "main() : creating thread, " << i << endl;

rc = pthread_create(&threads[i], NULL, wait, (void *)i );

if (rc){

cout << "Error:unable to create thread," << rc << endl;

exit(-1);
}
}

}

// free attribute and wait for the other threads
pthread_attr_destroy(&attr);
for(i=0; i < NUM_THREADS; i++ ){
rc = pthread_join(threads[i], &status);
if (rc){
cout << "Error:unable to join," << rc << endl;
exit(-1);
}

cout << "Main: completed thread id :" <<i;
cout << " exiting with status :" << (int)status << endl;

}

cout << "Main: program exiting." << end|;
pthread_exit(NULL);

main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Sleeping in thread

Thread with id : 0 ...exiting
Sleeping in thread

Thread with id : 1 ...exiting
Sleeping in thread

Thread with id : 2 ...exiting
Sleeping in thread

Thread with id : 3 ...exiting
Sleeping in thread

Thread with id : 4 ...exiting



The move support in std::thread also allows for containers of std::thread
objects, if those containers are move aware (like the updated std: :vector<>). This
means that you can write code like that in the following listing, which spawns a num-
ber of threads and then waits for them to finish.

void do_work (unsigned id) ;

void f ()

{

std: :vector<std: :thread> threads;
for (unsigned i=0;i<20;++1i)

{ <J Spawn
threads.push back(std::thread(do work,i)) ; threads

} ..

std::for each(threads.begin(),threads.end(), Call join() on each

std: :mem_fn(&std::thread::join)); thread in turn

}
If the threads are being used to subdivide the work of an algorithm, this is often just
what’s required; before returning to the caller, all threads must have finished. Of
course, the simple structure of listing 2.7 implies that the work done by the threads is
self-contained, and the result of their operations is purely the side effects on shared
data. If £ () were to return a value to the caller that depended on the results of the
operations performed by these threads, then as written this return value would have
to be determined by examining the shared data after the threads had terminated.
Alternative schemes for transferring the results of operations between threads are dis-
cussed in chapter 4.

Putting std::thread objects in a std::vector is a step toward automating the
management of those threads: rather than creating separate variables for those



template<typename Iterator,typename T>
struct accumulate block

{

void operator() (Iterator first,Iterator last,T& result)

{
}

result=std: :accumulate (first, last, result) ;

}i

template<typename Iterator,typename T>
T parallel accumulate(Iterator first,Iterator last,T init)

{

unsigned long const length=std::distance(first, last);

if (!length)
return init;

unsigned long const min_per thread=25;
unsigned long const max threads=
(length+min_per thread-1)/min_per thread; qgt)

unsigned long const hardware threads=
std::thread: :hardware_concurrency () ;

unsigned long const num_ threads= <%5,

+@

std: :min (hardware threads!=0?hardware threads:2,max threads) ;

unsigned long const block size=length/num threads;

std::vector<T> results(num threads) ;
std::vector<std::thread> threads(num_threads-1) ;

Iterator block start=first;
for (unsigned long i=0;i<(num threads-1);++1i)
{
Iterator block_end=block_start;
std: :advance (block_end,block_size) ;
threads [i] =std: :thread( 4—"
accumulate block<Iterator,T>(),
block start,block end,std::ref (results([il]));
block start=block_end;
1
accumulate block<Iterator,T>() (
block start,last,results[num threads-1]); 44{)

std::for each(threads.begin(), threads.end(),
std::mem_fn(&std::thread::join)); 4“@

+Q
<+ @
<+ 0O

+ 0@

return std::accumulate (results.begin(),results.end(),init);

+@



And the bullet-point by bullet-point explanation/elaboration

Although this is quite a long function, it’s actually straightforward. If the input range
is empty @, you just return the initial value init. Otherwise, there’s at least one ele-
ment in the range, so you can divide the number of elements to process by the mini-
mum block size in order to give the maximum number of threads @. This is to avoid
creating 32 threads on a 32-core machine when you have only five values in the range.

The number of threads to run is the minimum of your calculated maximum and
the number of hardware threads €. You don’t want to run more threads than the
hardware can support (which is called oversubscription), because the context switching
will mean that more threads will decrease the performance. If the call to std: :thread: :
hardware concurrency () returned 0, you’d simply substitute a number of your choice;
in this case I've chosen 2. You don’t want to run too many threads, because that would
slow things down on a single-core machine, but likewise you don’t want to run too few,
because then you’d be passing up the available concurrency.

The number of entries for each thread to process is the length of the range
divided by the number of threads @. If you're worrying about the case where the
number doesn’t divide evenly, don’t—you’ll handle that later.

Now that you know how many threads you have, you can create a std: :vector<T>
for the intermediate results and a std::vector<std::thread> for the threads @.
Note that you need to launch one fewer thread than num_threads, because you already
have one.

Launching the threads is just a simple loop: advance the block_end iterator to the
end of the current block @ and launch a new thread to accumulate the results for this
block @. The start of the next block is the end of this one @.

After you've launched all the threads, this thread can then process the final block
©. This is where you take account of any uneven division: you know the end of the
final block must be last, and it doesn’t matter how many elements are in that block.

Once you’ve accumulated the results for the last block, you can wait for all the
threads you spawned with std: : for_each ), as in listing 2.7, and then add up the results
with a final call to std: :accumulate ).



Thread Identifiers

Identifying threads

Thread identifiers are of type std::thread::id and can be retrieved in two ways.
First, the identifier for a thread can be obtained from its associated std::thread
object by calling the get_id() member function. If the std: :thread object doesn’t
have an associated thread of execution, the call to get id() returns a default-
constructed std::thread: :id object, which indicates “not any thread.” Alternatively,
the identifier for the current thread can be obtained by calling std: :this_thread::
get_id(), which is also defined in the <thread> header.

Objects of type std::thread::id can be freely copied and compared; they
wouldn’t be of much use as identifiers otherwise. If two objects of type std: :thread::id
are equal, they represent the same thread, or both are holding the “not any thread”
value. If two objects aren’t equal, they represent different threads, or one represents a
thread and the other is holding the “not any thread” value.

The Thread Library doesn’t limit you to checking whether thread identifiers are
the same or not; objects of type std: :thread::id offer the complete set of compari-
son operators, which provide a total ordering for all distinct values. This allows them
to be used as keys in associative containers, or sorted, or compared in any other way
that you as a programmer may see fit. The comparison operators provide a total order
for all non-equal values of std::thread::id, so they behave as you’d intuitively
expect: if a<b and b<c, then a<c, and so forth. The Standard Library also provides
std: :hash<std: :thread: :id> so that values of type std: :thread: :id can be used as
keys in the new unordered associative containers too.

Instances of std: :thread: :id are often used to check whether a thread needs to
perform some operation. For example, if threads are used to divide work as in list-
ing 2.8, the initial thread that launched the others might need to perform its work
slightly differently in the middle of the algorithm. In this case it could store the result
of std::this_thread::get_id() before launching the other threads, and then the
core part of the algorithm (which is common to all threads) could check its own
thread ID against the stored value:



Thread Identifiers

std::thread::id master thread;
void some core part of algorithm()

{

if (std::this_thread::get_id()==master_ thread)

{
}

do_common_work () ;

do master thread work() ;

}

Alternatively, the std::thread::id of the current thread could be stored in a data
structure as part of an operation. Later operations on that same data structure could
then check the stored ID against the ID of the thread performing the operation to
determine what operations are permitted/required.

Similarly, thread IDs could be used as keys into associative containers where spe-
cific data needs to be associated with a thread and alternative mechanisms such as
thread-local storage aren’t appropriate. Such a container could, for example, be used
by a controlling thread to store information about each of the threads under its con-
trol or for passing information between threads.

The idea is that std: : thread: : id will suffice as a generic identifier for a thread in
most circumstances; it’s only if the identifier has semantic meaning associated with it
(such as being an index into an array) that alternatives should be necessary. You can
even write out an instance of std: :thread: :1d to an output stream such as std: : cout:

std::cout<<std::this thread::get id() ;



Problems with sharing data between threads

When it comes down to it, the problems with sharing data between threads are all due
to the consequences of modifying data. If all shared data is read-only, there’s no problem,
because the data read by one thread is unaffected by whether or not another thread is reading the
same data. However, if data is shared between threads, and one or more threads start
modifying the data, there’s a lot of potential for trouble. In this case, you must take
care to ensure that everything works out OK.

One concept that’s widely used to help programmers reason about their code is
that of invariants—statements that are always true about a particular data structure,
such as “this variable contains the number of items in the list.” These invariants are
often broken during an update, especially if the data structure is of any complexity or
the update requires modification of more than one value.

Consider a doubly linked list, where each node holds a pointer to both the next
node in the list and the previous one. One of the invariants is that if you follow a
“next” pointer from one node (A) to another (B), the “previous” pointer from that
node (B) points back to the first node (A). In order to remove a node from the list,
the nodes on either side have to be updated to point to each other. Once one has
been updated, the invariant is broken until the node on the other side has been
updated too; after the update has completed, the invariant holds again.

The steps in deleting an entry from such a list are shown in figure 3.1:

Identify the node to delete (N).
Update the link from the node prior to N to point to the node after N.

Update the link from the node after N to point to the node prior to N.
Delete node N.

A W N B

As you can see, between steps b and c, the links going in one direction are inconsis-
tent with the links going in the opposite direction, and the invariant is broken.



T o R R
a)
Tl et —> et
<— e 0 | = o ] o ]
b)
[ o] [ et (I
o N I te ] pZ I
C) \\\//
[ ] [ et (IS
d) S

\0@ \ 2

Figure 3.1 Deleting a node from a doubly linked list




Avoiding problematic race conditions

There are several ways to deal with problematic race conditions. The simplest option is
to wrap your data structure with a protection mechanism, to ensure that only the thread
actually performing a modification can see the intermediate states where the invari-
ants are broken. From the point of view of other threads accessing that data structure,

such modifications either haven’t started or have completed. The C++ Standard
Library provides several such mechanisms, which are described in this chapter.

Another option is to modify the design of your data structure and its invariants so
that modifications are done as a series of indivisible changes, each of which preserves
the invariants. This is generally referred to as lock-free programming and is difficult to get
right. If you’re working at this level, the nuances of the memory model and identifying
which threads can potentially see which set of values can get complicated. The memory
model is covered in chapter 5, and lock-free programming is discussed in chapter 7.

Another way of dealing with race conditions is to handle the updates to the data
structure as a fransaction, just as updates to a database are done within a transaction.
The required series of data modifications and reads is stored in a transaction log and
then committed in a single step. If the commit can’t proceed because the data struc-
ture has been modified by another thread, the transaction is restarted. This is termed
software transactional memory (STM), and it’s an active research area at the time of writ-
ing. This won’t be covered in this book, because there’s no direct support for STM in
C++. However, the basic idea of doing something privately and then committing in a
single step is something that I’ll come back to later.

The most basic mechanism for protecting shared data provided by the C++ Stan-
dard is the mutex, so we’ll look at that first.



mutex — mutual exclusion

Protecting shared data with mutexes

So, you have a shared data structure such as the linked list from the previous section,
and you want to protect it from race conditions and the potential broken invariants
that can ensue. Wouldn’t it be nice if you could mark all the pieces of code that access
the data structure as mutually exclusive, so that if any thread was running one of them,
any other thread that tried to access that data structure had to wait until the first
thread was finished? That would make it impossible for a thread to see a broken
invariant except when it was the thread doing the modification.

Well, this isn’t a fairy tale wish—it’s precisely what you get if you use a synchroniza-
tion primitive called a mutex (mutual exclusion). Before accessing a shared data struc-
ture, you lock the mutex associated with that data, and when you’ve finished accessing
the data structure, you unlock the mutex. The Thread Library then ensures that once
one thread has locked a specific mutex, all other threads that try to lock the same
mutex have to wait until the thread that successfully locked the mutex unlocks it. This
ensures that all threads see a self-consistent view of the shared data, without any bro-
ken invariants.

Mutexes are the most general of the data-protection mechanisms available in C++,
but they’re not a silver bullet; it’s important to structure your code to protect the right
data (see section 3.2.2) and avoid race conditions inherent in your interfaces (see sec-
tion 3.2.3). Mutexes also come with their own problems, in the form of a deadlock (see
section 3.2.4) and protecting either too much or too little data (see section 3.2.8).
Let’s start with the basics.



Using mutexes in C++

In C++, you create a mutex by constructing an instance of std: :mutex, lock it with a
call to the member function lock (), and unlock it with a call to the member func-
tion unlock () . However, it isn’t recommended practice to call the member functions
directly, because this means that you have to remember to call unlock() on every
code path out of a function, including those due to exceptions. Instead, the Standard
C++ Library provides the std::lock_guard class template, which implements that
RAII idiom for a mutex; it locks the supplied mutex on construction and unlocks it
on destruction, thus ensuring a locked mutex is always correctly unlocked. The fol-
lowing listing shows how to protect a list that can be accessed by multiple threads
using a std: :mutex, along with std::lock_guard. Both of these are declared in the
<mutex> header.

#include <list>
#include <mutex>
#include <algorithm>

std::list<int> some list; 44‘)
std::mutex some mutex; 4—{D

void add to list (int new_value)

{

std::lock_guard<std::mutex> guard(some_mutex) ; 4—‘,
some_ list.push back (new value) ;

}

bool list_contains(int value_to_find)

{ 9
std::lock guard<std::mutex> guard(some mutex) ;
return std::find(some_list.begin(),some_list.end(),value_to_find)
!= some list.end();

}

In listing 3.1, there’s a single global variable @, and it’s protected with a corresponding
global instance of std::mutex @. The use of std::lock guard<std::mutex> in
add to list() @ and again in list contains() @ means that the accesses in these
functions are mutually exclusive: 1ist contains() will never see the list partway
through a modification by add_to_list ().



#include <exceptions
fiinclude <memory> 7] For std::shared_ptr<>

struct empty stack: std::exception

{
}i

template<typename T>

const char* what () const throw() ;

class threadsafe stack Assignment
{ operator is
public: deleted

threadsafe stack() ;
threadsafe stack(const threadsafe stacké&);
threadsafe stack& operator=(const threadsafe stack&) = delete;

void push(T new value) ;
std: :shared ptr<T> pop () ;
void pop (T& value) ;

bool empty () const;

}i

By paring down the interface you allow for maximum safety; even operations on the
whole stack are restricted. The stack itself can’t’ be assigned, because the assignment
operator is deleted @ (see appendix A, section A.2), and there’s no swap () function.
It can, however, be copied, assuming the stack elements can be copied. The pop ()
functions throw an empty stack exception if the stack is empty, so everything still
works even if the stack is modified after a call to empty (). As mentioned in the
description of option 3, the use of std::shared ptr allows the stack to take care of
the memory-allocation issues and avoid excessive calls to new and delete if desired.
Your five stack operations have now become three: push (), pop (), and empty (). Even
empty () is superfluous. This simplification of the interface allows for better control
over the data; you can ensure that the mutex is locked for the entirety of an operation.
The following listing shows a simple implementation that’s a wrapper around
std::stack<>.



exchanges data between two instances of the same class; in order to ensure that the
data is exchanged correctly, without being affected by concurrent modifications,
the mutexes on both instances must be locked. However, if a fixed order is chosen
(for example, the mutex for the instance supplied as the first parameter, then the
mutex for the instance supplied as the second parameter), this can backfire: all it
takes is for two threads to try to exchange data between the same two instances with
the parameters swapped, and you have deadlock!

Thankfully, the C++ Standard Library has a cure for this in the form of std: : lock—
a function that can lock two or more mutexes at once without risk of deadlock. The
example in the next listing shows how to use this for a simple swap operation.

class some_big object;
void swap (some_big object& lhs,some big object& rhs);

class X
{
private:
some_big object some detail;
std: :mutex m;
public:
X (some_big object const& sd) :some detail (sd) {}

friend void swap (X& lhs, X& rhs)

{

if (&1lhs==&rhs)

return; j
std::lock(lhs.m,rhs.m) ;
std::lock _guard<std::mutex> lock a(lhs.m,std::adopt_lock) ; 446)
std::lock guard<std::mutex> lock b(rhs.m,std::adopt_ lock) ;
swap (lhs.some_detail, rhs.some_detail) ; <FE,

}i

First, the arguments are checked to ensure they are different instances, because
attempting to acquire a lock on a std: :mutex when you already hold it is undefined
behavior. (A mutex that does permit multiple locks by the same thread is provided in
the form of std::recursive mutex. See section 3.3.3 for details.) Then, the call to
std::lock () @ locks the two mutexes, and two std: :lock guard instances are con-
structed @, @, one for each mutex. The std: :adopt_lock parameter is supplied in
addition to the mutex to indicate to the std::lock_guard objects that the mutexes
are already locked, and they should just adopt the ownership of the existing lock on
the mutex rather than attempt to lock the mutex in the constructor.



Further guidelines for avoiding deadlock

Deadlock doesn’t just occur with locks, although that’s the most frequent cause; you
can create deadlock with two threads and no locks just by having each thread call
join() on the std::thread object for the other. In this case, neither thread can make
progress because it’s waiting for the other to finish, just like the children fighting over
their toys. This simple cycle can occur anywhere that a thread can wait for another
thread to perform some action if the other thread can simultaneously be waiting for
the first thread, and it isn’t limited to two threads: a cycle of three or more threads will
still cause deadlock. The guidelines for avoiding deadlock all boil down to one idea:
don’t wait for another thread if there’s a chance it’s waiting for you. The individual
guidelines provide ways of identifying and eliminating the possibility that the other
thread is waiting for you.

AvOID NESTED LOCKS

The first idea is the simplest: don’t acquire a lock if you already hold one. If you stick
to this guideline, it’s impossible to get a deadlock from the lock usage alone because
each thread only ever holds a single lock. You could still get deadlock from other
things (like the threads waiting for each other), but mutex locks are probably the
most common cause of deadlock. If you need to acquire multiple locks, do it as a sin-
gle action with std: : lock in order to acquire them without deadlock.

AVOID CALLING USER-SUPPLIED CODE WHILE HOLDING A LOCK

This is a simple follow-on from the previous guideline. Because the code is user sup-
plied, you have no idea what it could do; it could do anything, including acquiring a
lock. If you call user-supplied code while holding a lock, and that code acquires a lock,
you’ve violated the guideline on avoiding nested locks and could get deadlock. Some-
times this is unavoidable; if you’re writing generic code such as the stack in section 3.2.3,
every operation on the parameter type or types is user-supplied code. In this case, you
need a new guideline.

ACQUIRE LOCKS IN A FIXED ORDER
If you absolutely must acquire two or more locks, and you can’t acquire them as a sin-
gle operation with std::lock, the next-best thing is to acquire them in the same



class Y

{

private:
int some detail;
mutable std::mutex m;

int get detail() const

{
std::lock_guard<std::mutex> lock_a(m); qg"
return some_detail;

}

public:
Y (int sd) :some_detail (sd) {}

friend bool operator==(Y const& lhs, Y consté& rhs)

{
if (&1lhs==&rhs)
return true;
int const lhs_value=lhs.get_detail(); qgi)
int const rhs_value=rhs.get_detail() ; <$4€,
return lhs_value==rhs_value; 44¢,

i

In this case, the comparison operator first retrieves the values to be compared by call-
ing the get_detail () member function @, €. This function retrieves the value while

protecting it with a lock @. The comparison operator then compares the retrieved
values @. Note, however, that as well as reducing the locking periods so that only one
lock is held at a time (and thus eliminating the possibility of deadlock), this has subtly
changed the semantics of the operation compared to holding both locks together. In list-
ing 3.10, if the operator returns true, it means that the value of 1hs.some_detail at
one point in time is equal to the value of rhs.some_detail at another point in time.
The two values could have been changed in any way in between the two reads; the values
could have been swapped in between @ and @, for example, thus rendering the com-
parison meaningless. The equality comparison might thus return true to indicate that
the values were equal, even though there was never an instant in time when the values
were actually equal. It’s therefore important to be careful when making such changes
that the semantics of the operation are not changed in a problematic fashion: if you
don’t hold the required locks for the entire duration of an operation, you’re exposing yourself to
race conditions.



The following listing shows a simple DNS cache like the one jﬁst described, using a
std: :map to hold the cached data, protected using a boost: : shared mutex.

#include <map>

#include <string>

#include <mutex>

#include <boost/thread/shared mutex.hpp>

class dns_entry;

class dns_cache

{

std::map<std::string,dns_entry> entries;
mutable boost::shared mutex entry mutex;
public:
dns_entry find entry(std::string const& domain) const

{

boost: :shared lock<boost::shared mutex> lk(entry mutex) ; q—‘)

std: :map<std::string,dns entry>::const iterator const it=
entries.find (domain) ;

return (it==entries.end())?dns_entry() :it->second;

}

void update or add entry(std::string const& domain,
dns _entry const& dns details)

{

std: :lock _guard<boost::shared mutex> lk(entry mutex) ; <¢—€)
entries[domain] =dns details;

}i

In listing 3.13, find entry () uses an instance of boost: :shared lock<> to protect it
for shared, read-only access @; multiple threads can therefore call find entry()
simultaneously without problems. On the other hand, update or add entry() uses
an instance of std::lock guard<> to provide exclusive access while the table is
updated @; not only are other threads prevented from doing updates in a call update
or_add _entry (), but threads that call £ind entry () are blocked too.



How does that relate to threads? Well, if one thread is waiting for a second thread
to complete a task, it has several options. First, it could just keep checking a flag in
shared data (protected by a mutex) and have the second thread set the flag when it
completes the task. This is wasteful on two counts: the thread consumes valuable pro-
cessing time repeatedly checking the flag, and when the mutex is locked by the wait-
ing thread, it can’t be locked by any other thread. Both of these work against the
thread doing the waiting, because they limit the resources available to the thread
being waited for and even prevent it from setting the flag when it’s done. This is akin
to staying awake all night talking to the train driver: he has to drive the train more
slowly because you keep distracting him, so it takes longer to get there. Similarly, the
waiting thread is consuming resources that could be used by other threads in the sys-
tem and may end up waiting longer than necessary.

A second option is to have the waiting thread sleep for small periods between the
checks using the std::this thread::sleep for () function (see section 4.3):

bool flag;
std: :mutex m;

void wait for flag()

{

std::unique lock<std::mutex> lk(m) ; Unlock the mutex
while(!flag)

{ Sleep for 100 ms
lk.unlock () ;
std::this thread::sleep for(std::chrono::milliseconds(100)) ;

lk.lock () ;
\ J Qg Relock the mutex

In the loop, the function unlocks the mutex @ before the sleep @ and locks it again
afterward @, so another thread gets a chance to acquire it and set the flag.



std: :mutex mut;
std: :queue<data_chunk> data_queue; 44‘)
std::condition variable data cond;

void data_preparation thread()

{

while (more data_to_prepare())

{

data_chunk const data=prepare data();
std::lock_guard<std::mutex> lk (mut) ;

data_gueue.push(data) ; 44‘9
data cond.notify one () ; 3]

}

void data_ processing thread()

{

while (true)

{

std::unique lock<std::mutex> lk(mut) ; 44‘)

data_cond.wait (

1k, []1 {return !data queue.empty();}); 5 )
data_chunk data=data_gqueue.front () ;
data_queue.pop () ;
1k .unlock () ;
process (data) ;
if (is_last_ chunk (data))

break;

}

First off, you have a queue @ that’s used to pass the data between the two threads.
When the data is ready, the thread preparing the data locks the mutex protecting the
queue using a std: :lock_guard and pushes the data onto the queue @. It then calls
the notify one() member function on the std::condition variable instance to
notify the waiting thread (if there is one) €.

On the other side of the fence, you have the processing thread. This thread first
locks the mutex, but this time with a std::unique lock rather than a std::lock_
guard @—you’ll see why in a minute. The thread then calls wait () on the std::
condition variable, passing in the lock object and a lambda function that expresses
the condition being waited for @. Lambda functions are a new feature in C++11 that
allows you to write an anonymous function as part of another expression, and they’re
ideally suited for specifying predicates for standard library functions such as wait ().



On Windows, setting threads for each
e e e Processor

#include <stdio.h>

HANDLE *m_threads = NULL;
DWORD_PTR WINAPI threadMain(void* p);

DWORD_PTR GetNumCPUs() {

SYSTEM_INFO m_si =10, };

GetSystemInfo(&m_si);

return (DWORD_PTR)m_si.dwNumberOfProcessors;
}

int wmain(int argc, wchar_t **args) {
DWORD_PTR ¢ = GetNumCPUs();
m_threads = new HANDLE[c];
for(DWORD_PTRi=0; i < c; i++) {
DWORD_PTR m_id = 0;
DWORD_PTR m_mask = 1 << ;
m_threads[i] = CreateThread(NULL, O,
(LPTHREAD_START_ROUTINE)threadMain, (LPVOID)i, NULL, &m_id);
SetThreadAffinityMask(m_threads[i], m_mask);

wprintf(L"Creating Thread %d (0x%08x) Assigning to
CPU 0x%08x\r\n", i, (LONG_PTR)m_threads][i], m_mask);
}

return O;

}

DWORD_PTR WINAPI threadMain(void* p) {
return O;

}



std::thread::Nardware_concurrency

static unsigned hardware concurrency(); (since C++11)

Returns number of concurrent threads supported by the implementation. The value should be considered only a hint.

Parameters
(none)

Return value
number of concurrent threads supported. If the value is not well defined or not computable, returns 0.

Exceptions
noexcept specification: noexcept (since C++11)

Example
run this code &

#include <iostream>
#include <thread>

int main() {
unsigned int n = std::thread::hardware concurrency();
std::cout << n << " concurrent threads are supported.\n";

#include <iostream>
#include <thread>

int main() {
unsigned int n = std::thread::hardware_concurrency();
std::cout << n << " concurrent threads are supported.\n";

} 2 concurrent threads are supported.



Using atomic types — indivisible
operations can’t be half-done

Atomic operations and types in C++

An atomic operation is an indivisible operation. You can’t observe such an operation
half-done from any thread in the system; it’s either done or not done. If the load oper-
ation that reads the value of an object is atomic, and all modifications to that object are
also atomic, that load will retrieve either the initial value of the object or the value
stored by one of the modifications.

The flip side of this is that a nonatomic operation might be seen as half-done by
another thread. If that operation is a store, the value observed by another thread
might be neither the value before the store nor the value stored but something else. If
the nonatomic operation is a load, it might retrieve part of the object, have another
thread modify the value, and then retrieve the remainder of the object, thus retrieving
neither the first value nor the second but some combination of the two. This is a sim-
ple problematic race condition, as described in chapter 3, but at this level it may con-
stitute a data race (see section 5.1) and thus cause undefined behavior.

In C++, you need to use an atomic type to get an atomic operation in most cases, so
let’s look at those.

The standard atomic types

The standard atomic types can be found in the <atomic> header. All operations on such
types are atomic, and only operations on these types are atomic in the sense of the lan-
guage definition, although you can use mutexes to make other operations appear
atomic. In actual fact, the standard atomic types themselves might use such emula-
tion: they (almost) all have an is_lock free() member function, which allows the
user to determine whether operations on a given type are done directly with atomic
instructions (x.is_lock free() returns true) or done by using a lock internal to the
compiler and library (x.is_lock free() returns false).



L

struct my data

|
int i;
douk?le d; bf3
9n31gned bfl:10; Object
int bf2:25;
int b£3:0; —>»| || Bf
int i2;

char cl,c2;
std::string s;

iy

Q Q -
N N
[~

I

Figure 5.1 The division of a struct into objects and memory locations

There are four important things to take away from this:

= Every variable is an object, including those that are members of other objects.

= Every object occupies at least one memory location.

= Variables of fundamental type such as int or char are exactly one memory loca-
tion, whatever their size, even if they’re adjacent or part of an array.

= Adjacent bit fields are part of the same memory location.

I'm sure you’re wondering what this has to do with concurrency, so let’s take a look.

Objects, memory locations, and concurrency

Now, here’s the part that’s crucial for multithreaded applications in C++: everything
hinges on those memory locations. If two threads access separate memory locations,
there’s no problem: everything works fine. On the other hand, if two threads access
the same memory location, then you have to be careful. If neither thread is updating the
memory location, you’'re fine; read-only data doesn’t need protection or synchroniza-
tion. If either thread is modifying the data, there’s a potential for a race condition, as
described in chapter 3.

In order to avoid the race condition, there has to be an enforced ordering
between the accesses in the two threads. One way to ensure there’s a defined ordering
is to use mutexes as described in chapter 3; if the same mutex is locked prior to both
accesses, only one thread can access the memory location at a time, so one must hap-
pen before the other. The other way is to use the synchronization properties of atomic
operations (see section 5.2 for the definition of atomic operations) either on the same
or other memory locations to enforce an ordering between the accesses in the two



Table 5.1 The alternative names for the standard atomic types and their corresponding std: :atomic<>
specializations

Atomic type Corresponding specialization
atomic bool std::atomic<bool>
atomic_char std::atomic<char>
atomic_schar std::atomic<signed char>
atomic_uchar std::atomic<unsigned chars>
atomic_int std::atomic<int>
atomic_uint std::atomic<unsigneds>
atomic_short std::atomic<shorts>
atomic_ushort std::atomic<unsigned shorts>
atomic_long std::atomic<long>
atomic_ulong std::atomic<unsigned longs>
atomic_llong std::atomic<long longs>
atomic_ullong std::atomic<unsigned long longs
atomic_charlé t std::atomic<charlé t>
atomic_char32 t std::atomic<char32 t»>
atomic_wchar_ t std::atomic<wchar t>




Table 5.3 The operations available on atomic types

. . . atomic atomic
Operation atomic_ latomic | atomic <integral- | <other-
flag <bool> <T*> type> type>
test and set 4
clear v/
is_lock free v v/ 4 v
load v v/ v v/
store v/ 4 v v
exchange v/ v v v
compare exchange weak, 4 v/ v/ v/
compare exchange strong
fetch add, += v/ v/
fetch sub, -= v/ v/
fetch or, |= v
fetch and, &= v
fetch xor, "= v
++, -- v v




The C++ Standard Library also provides free functions for accessing instances of
std: :shared ptr<> in an atomic fashion. This is a break from the principle that only
the atomic types support atomic operations, because std: : shared ptr<> is quite defi-
nitely not an atomic type. However, the C++ Standards Committee felt it was suffi-
ciently important to provide these extra functions. The atomic operations available
are load, store, exchange, and compare/exchange, which are provided as overloads of the
same operations on the standard atomic types, taking a std::shared ptr<>* as
the first argument:

std::shared ptr<my datas> p;

void process global data()

{
std: :shared ptr<my data> local=std::atomic_load(&p) ;
process_data(local) ;

}

void update global data()

{

std::shared ptr<my data> local (new my data);
std::atomic_store (&p, local) ;



#include <vector>
#include <atomic>
#include <iostream>

std: :vector<int> data;
std::atomic<bool> data ready(false) ;

void reader thread()

{
while (!data_ready.load()) 44‘)

{
}

std: :cout<<”The answer="<<datal[0]<<”"\n"; 4—€)

std::this thread::sleep(std::milliseconds (1)) ;

}

void writer thread()

{

data.push back(42) ; 4“’

data_ready=true; Q0

}
Leaving aside the inefficiency of the loop waiting for the data to be ready @), you
really need this to work, because otherwise sharing data between threads becomes
impractical: every item of data is forced to be atomic. You’ve already learned that it’s
undefined behavior to have nonatomic reads @ and writes € accessing the same
data without an enforced ordering, so for this to work there must be an enforced
ordering somewhere.

The required enforced ordering comes from the operations on the std::
atomic<bool> variable data_ready; they provide the necessary ordering by virtue of
the memory model relations happens-before and synchronizes-with. The write of the data @
happens-before the write to the data_ready flag @, and the read of the flag @ hap-
pens-before the read of the data @. When the value read from data_ready @ is true,
the write synchronizes-with that read, creating a happens-before relationship. Because
happens-before is transitive, the write to the data @ happens-before the write to the
flag @, which happens-before the read of the true value from the flag @), which
happens-before the read of the data @, and you have an enforced ordering: the write
of the data happens-before the read of the data and everything is OK. Figure 5.2 shows
the important happens-before relationships in the two threads. I've added a couple of
iterations of the while loop from the reader thread.



The simplest possible thread pool



class thread pool

{

std::atomic_bool done;

thread _safe_ queue<std::function<void()> > work queue; qg‘)
std::vector<std::thread> threads;

join_threads joiner;

void worker thread()

{
while (!done) q—‘,
{

std::function<void () > task;
if (work_queue.try pop (task)) QA‘D

{
task () ; <}—@
1

else
{
std::this_thread::yield(); @
}
}
}
public:
thread_pool () :
done (false) , joiner (threads)
{ .9
unsigned const thread count=std::thread::hardware_concurrency () ;
try

{

for (unsigned i=0;i<thread_count;++i)

{

threads.push_back(

std: :thread(&thread pool::worker thread,this)); 44‘)
}
}
catch(...)
{
done=true; 4“@
throw;
}
}
~thread_pool (

{
}

template<typename FunctionTypes>
void submit (FunctionType f)

{
}

done=true; 4““

work_gqueue.push(std: : function<void()>(£f)); QA{B

}i



This implementation has a vector of worker threads @ and uses one of the thread-safe
queues from chapter 6 @ to manage the queue of work. In this case, users can’t wait
for the tasks, and they can’t return any values, so you can use std: : function<void() >
to encapsulate your tasks. The submit () function then wraps whatever function or
callable object is supplied inside a std: : function<void() > instance and pushes it on
the queue (.

The threads are started in the constructor: you use std::thread::hardware_
concurrency () to tell you how many concurrent threads the hardware can support @,
and you create that many threads running your worker thread () member function @.

Starting a thread can fail by throwing an exception, so you need to ensure that any
threads you've already started are stopped and cleaned up nicely in this case. This is
achieved with a try-catch block that sets the done flag when an exception is thrown 9,
alongside an instance of the join threads class from chapter 8 € to join all the
threads. This also works with the destructor: you can just set the done flag @), and
the join_threads instance will ensure that all the threads have completed before the
pool is destroyed. Note that the order of declaration of the members is important:
both the done flag and the worker_gueue must be declared before the threads vector,
which must in turn be declared before the joiner. This ensures that the members are
destroyed in the right order; you can’t destroy the queue safely until all the threads
have stopped, for example.

The worker thread function itself is quite simple: it sits in a loop waiting until the
done flag is set @, pulling tasks off the queue @ and executing them @ in the mean-
time. If there are no tasks on the queue, the function calls std::this thread::
yield() to take a small break @ and give another thread a chance to put some work
on the queue before it tries to take some off again the next time around.

For many purposes such a simple thread pool will suffice, especially if the tasks
are entirely independent and don’t return any values or perform any blocking oper-
ations. But there are also many circumstances where such a simple thread pool may
not adequately address your needs and yet others where it can cause problems such
as deadlock. Also, in the simple cases you may well be better served using std::
async as in many of the examples in chapter 8. Throughout this chapter, we’ll look
at more complex thread pool implementations that have additional features either
to address user needs or reduce the potential for problems. First up: waiting for the
tasks we’ve submitted.



Next time... threadsafe Cinder Kinect!

Since you have remapped the normals back onto a webcam image, it is a trivial matter to create a
lightsource and dynamically change the lighting of your realtime webcam input. For the following
video, | have created a virtual swinging light source above my head.




